• Title/Summary/Keyword: Chezy계수

Search Result 14, Processing Time 0.023 seconds

Evaluation of Parameters in Hydrodynamic Model (동수역학모형의 매개변수 산정)

  • Yun, Tae-Hun;Lee, Jong-Uk;Jagal, Sun-Dong
    • Journal of Korea Water Resources Association
    • /
    • v.33 no.1
    • /
    • pp.39-50
    • /
    • 2000
  • Generally speaking, a hydrodynamic model needs a friction coefficient (Manning coefficient or Chezy coefficient) and eddy viscosity. For numerical solution the coefficients are usually determined by recursive calculations. The eddy viscosity in numerical model plays physical diffusion in flow and also acts as numerical viscosity. Hence its value has influence on the stability of numerical solution and for these reasons a consistent evaluation procedure is needed. By using records of stage and discharge in the downstream reach of the Han river, I-D models (HEC-2 and NETWORK) and 2-D model (SMS), estimated values of Manning coefficient and an empirical equation for eddy viscosity are presented. The computed results are verified through the recorded flow elevation data.n data.

  • PDF

An Analysis of Unsteady Flow with Preissmann Scheme (Preissmann 기법에 의한 1차원 부정류의 해석)

  • 이종태
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 1982.07a
    • /
    • pp.27-32
    • /
    • 1982
  • In other to make a numerical modeling for the one dimensional unsteady flow which expressed by Saint Venant partial differential equations, Preissman's implicit scheme was used, and it's stability and accuracy was investigated. By introducing recurrence relations make it possible to use double sweep algorithm. Effective parameters to the result were the values df the $$ and the Chezy coefticient. In other to get numberical solutions with enough accuracy, $$ should not be far from the value of1, and when the criteria of the $$ was 0.6<$$<1.0, the result was alaways stable for any condition. This model should be calibrated by real fileld data, and expected to be developed for the simulation of the river system and to the long wave analysis for one dimensional coastal zone problem.

  • PDF

Prediction of River Discharge by Using Mean Velocity Equation (평균유속공식을 활용한 하천 유량예측)

  • Choo, Tai-Ho;Chae, Soo-Kwon;Yoon, Hyeon-Cheol;Song, Jung-Ju
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2012.05a
    • /
    • pp.135-139
    • /
    • 2012
  • 하천에서의 정확한 유량 산정은 하천의 설계 및 운영 유지에 매우 중요한 요소이다. 현재 하천의 유량 생산은 수위-유량관계곡선을 통하여 이루어지고 있다. 수위-유량관계곡선법은 측정된 수위와 유량자료의 관계를 바탕으로 홍수기 때의 유량을 회귀 추정법으로 예측하여 사용하는 방법이다. 비교적 간편하게, 특히 측정이 어려운 홍수기 때의 유량을 예측하여 사용할 수 있다는 장점을 가지고 있지만 수위와 유량만의 관계를 사용하므로 하천의 수리학적 특성을 반영하기 곤란하기 때문에 기본적으로 개선되어야 할 사항이 있다. 따라서, 본 연구에서는 하천유량을 예측하는 새로운 방법론의 하나로 KSCE에 기 게재된 Choo 등(2011)의 방법에 따라, 개수로에서 널리 사용되어 오고 있는 Manning식과 Chezy식을 활용하여 하천의 전체적인 특성을 잘 반영하는 특성조도계수 n과 특성Chezy계수 C를 사용하여 하천의 유량을 예측하였다. 실험실 직선수로에서 측정된 정류 자료와 객관성 있는 해외 하천 유량측정 자료를 사용하여 증명하였고 결정계수 0.8 정도 수준의 높은 정확성을 보여주는 성과를 나타내었다. 따라서 본 연구결과를 통해 하천의 수리학적 특성을 반영하면서도 간단하게 유량을 예측할 수 있는 방법으로 실무에서 간편하게 활용될 수 있을 것으로 기대한다.

  • PDF

Development of the Formula for the Vertical Profile of the Longitudinal Velocity in Sharp Open Channel Bend (급변곡선수로에서 종방향 유속의 연직분포식 개발)

  • Kim Tae Won;Lee Kil Seong;Park Jae Hyeon;Lee Sang Ho
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2005.05b
    • /
    • pp.1123-1127
    • /
    • 2005
  • 종방향 유속의 연직분포 흐름 특성을 파악하기 위해서 중심각이 $180^{\circ}$인 단일 만곡부에서 실험을 수행하였다. 실험결과를 분석한 후 종방향 유속의 연직분포 흐름특성을 재현하기 위해서 원주형 종방향 운동 방정식에 와점성 개념을 도입하였다. Rozovskii의 종방향 그리고 연직방향 유속식들을 도입하여 이론식을 개발하였다. 이론식의 수리학적 변수들은 원심력 항, Chezy 계수, 그리고 전단유속 항들로 구성되어 있다. 이론식은 곡률반경을 따라 변화하는 만곡부 내에서 종방향 유속의 연직분포가 변형되는 현상을 재현하고 있다. 이론식은 본 연구에서 실험을 통해 취득한 관측자료와 비교한 결과 잘 일치함을 보여주고 있다.

  • PDF

Form Drag Factor of Contracted Flow (축소단면흐름 형상항력계수)

  • 권순국;유동훈
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.37 no.3_4
    • /
    • pp.82-89
    • /
    • 1995
  • The efforts of formulation have been reviewed and the results of existing laboratory experiments are investigated in order to describe the contracted flow which occurs at the final closure of sea dike construction. The regional characteristics of contracted flow is analyzed by checking the drawdown curve, and Chezy's mean velocity equation is employed to estimate the discharge rate at the closure. Weir-type discharge equations are reviewed, which are derived from Bernoulli equation, and the problems of the equations are discussed. Chezy's mean velocity equation is considered to be widely and generally applicable, and the empirical factor introduced in Chezy's equation is named 'form drag factor' since it is primarily dependent on the form drag caused by the contraction of discharge area. Laboratory experiments were conducted mainly in order to investigate the variation of form drag factor against various parameters, and an empirical equation is developed for the estimation of form drag factor.

  • PDF

An Analysis of Unsteady Flow with Preissmann Scheme (Preissmann기법에 의한 1차원 부정류의 해석)

  • 이종태
    • Water for future
    • /
    • v.15 no.1
    • /
    • pp.57-62
    • /
    • 1982
  • In order to make a numerical modeling for the one dimensional unsteady flow which expressed by Saint Venant partial differential equations, Preissman's implicit schem was used, and it's stability and accuracy was investigated. By introducing recurrence relations make it possible to use double sweep algorithm. Effective parameters to the result were the values of the C$$ and the Chezy coefticient. In order to get numerical solutions whith enough accuracy, C$$ should not be far from the value of1, and when the criteria of the $\theta$ was 0.6<$\theta$<1.0, the rewult was always stable for any condition. This model should be calibrated by real field data, and expected to be developed for the simulation of the river system and to the long wave analysis for one dimensional coastal zone problem.

  • PDF

Change of Water Level in Vegetated Channels (식생된 수로에서의 수위변화 분석)

  • Kim, byeong-chan;Yun, seong-jun;Kim, min-jeong;Lee, jong-seok
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2008.05a
    • /
    • pp.780-783
    • /
    • 2008
  • This study developed a model that could calculate roughness using Manning's and Chezy coefficient for Yangjae-stream. The estimated roughness by model developed was used for roughness coefficient in the stream without water level-discharge data. Roughness coefficient was estimated using assumed and calculated water level about each discharge scale by unsteady flow analysis. As a result, error of water surface level by model was shown 1.29m, it was shown that the flow resistance tends to increase with the desity of vegetation.

  • PDF

Development and Application of Diffusion Wave-based Distributed Runoff Model (확산파에 기초한 분포형 유출모형의 개발 및 적용)

  • Lee, Min-Ho;Yoo, Dong-Hoon
    • Journal of Korea Water Resources Association
    • /
    • v.44 no.7
    • /
    • pp.553-563
    • /
    • 2011
  • According to the improvement of computer's performance, the development of Geographic Information System (GIS), and the activation of offering information, a distributed model for analyzing runoff has been studied a lot in recently years. The distribution model is a theoretical and physical model computing runoff as making target basin subdivided parted. In the distributed model developed by this study, the volume of runoff at the surface flow is calculated on the basis of the parameter determined by landcover data and a two-dimensional diffusion wave equation. Most of existing runoff models compute velocity and discharge of flow by applying Manning-Strickler's mean velocity equation and Manning's roughness coefficient. Manning's roughness coefficient is not matched with dimension and ambiguous at computation; Nevertheless, it is widely used in because of its convenience for use. In order to improve those problems, this study developed the runoff model by applying not only Manning-Strickler's equation but also Chezy's mean velocity equation. Furthermore, this study introduced a power law of exponential friction factor expressed by the function of roughness height. The distributed model developed in this study is applied to 6 events of fan-shape basin, oblong shape test basin and Anseongcheon basin as real field conditions. As a result the model is found to be excellent in comparison with the exiting runoff models using for practical engineering application.

Estimation of Discharge Using Mean Velocity Equations (평균유속공식을 활용한 하천 유량 산정)

  • Choo, Tai-Ho;Koh, Deuk-Koo;Lee, Sang-Jin
    • Journal of Korea Water Resources Association
    • /
    • v.43 no.3
    • /
    • pp.265-273
    • /
    • 2010
  • This study proposed the method that can calculate discharge using hydraulic characteristics that can acquire easily-comparatively such as hydraulic radius, bed slope, depth to improve the stage-discharge curve equation considering only stage. Roughness coefficient n value and C value that hydraulic characteristics of rivers is reflected from Manning's equation and Chezy's equation using the measured data of the natural open channel in the report of Albert University estimated and calculated discharge on the basis of this. The method proposed in this study was calculated stunningly to measured discharge. And that compared with discharge by existent stage-discharge curve.

A Study on the Prediction of Discharge by Estimating Optimum Parameter of Mean Velocity Equation (평균유속공식의 최적매개변수 산정에 의한 유량예측에 관한 연구)

  • Choo, Tai Ho;Chae, Soo Kwon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.11
    • /
    • pp.5578-5586
    • /
    • 2012
  • The accurate estimation of discharge is very essential as the important factor of river design for the utilization and flood control, hydraulic construction design. The present discharge production is using the stage-discharge relationship curve in the river. The rating curve uses the method by predicting the discharge based on regression analysis using the measured stage and discharge data in a flood season. The method is comparatively convenient and has especially advantages in that it can predict the discharge having the difficulty of observation in a flood season. However, this method has basically room for improvement because the method only uses the relationship between stage and discharge, and doesn't reflect the hydraulic parameters such as hydraulic radius, energy slope, roughness, topography, etc.. Therefore, in this study, discharge was predicted using the convenient calculation method with empirical parameters of the Manning and Chezy equations, which were proposed by Choo et at (2011) in KSCE as a new methodology for estimating discharge in open channel. The proposed method can conveniently estimate empirical parameters in both of Manning and Chezy equations and the discharge is estimated in the open channels. There are proved by using data measured in meandering lab. channel and India canal and the accuracies show about determination coefficient 0.8. Accordingly, this method will be used in actual field if this study is continuously conducted.