• Title/Summary/Keyword: Chevron Spring

Search Result 7, Processing Time 0.02 seconds

Prediction and Evaluation of Stiffness of Chevron Spring for Rail Vehicle (철도차량용 세브론 스프링의 강성 예측 및 평가)

  • 김완두;김완수;우창수;정승일;김석원;김영구
    • Journal of the Korean Society for Railway
    • /
    • v.4 no.4
    • /
    • pp.123-130
    • /
    • 2001
  • A chevron rubber spring is used in primary suspension system for rail vehicle. The chevron spring support the load carried and reduces vibration and noise in operation of rail vehicle. The computer simulation using the nonlinear finite element analysis program MARC executed to predict and evaluate the load capacity and stiffness for the chevron spring. The appropriate shape and the material properties are proposed to adjust the required characteristics of chevron spring in the three modes of flexibility. Also, several samples of chevron spring are manufactured and experimented. It is shown that the predicted values agree well the results obtained from experiment.

  • PDF

Prediction of Dynamic Characteristics of Railway Vehicle by Stiffness Variation of Chevron Rubber Spring (세브론 스프링의 강성 변화에 따른 철도차량의 동특성 예측 연구)

  • You, Wonhee;Park, Joonhyuk;Park, Namcheol;Koo, Jeongseo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.27 no.2
    • /
    • pp.162-167
    • /
    • 2017
  • The chevron rubber spring is used for subway vehicle as a primary suspension. Generally, the primary suspension has an influence to the running performance and not so much effect on the ride comfort in railway vehicle. But the stiffness of chevron spring is harder and harder as time goes on because of rubber characteristics. Therefore the dynamic characteristics such as ride comfort and derailment coefficient should be reviewed according to the stiffness variation of chevron rubber spring. In this paper the effect of chevron rubber spring on dynamic characteristics was studied by considering multi-body dynamics of railway vehicle on one straight line and seven curved lines.

Evaluation of Characteristics of Chevron Spring for Rail Vehicle (철도차량용 셰브론 스프링의 특성 평가)

  • 김완두;김완수;우창수;정승일;김석원;김영구
    • Proceedings of the KSR Conference
    • /
    • 2001.05a
    • /
    • pp.186-192
    • /
    • 2001
  • A chevron rubber spring is used in primary suspension system for rail vehicle. The chevron spring has function which support the load carried and reduce vibration and noise in operation of rail vehicle. The computer simulation using the non-linear finite element analysis program MARC executed to predict and evaluate the load capacity and stiffness for tile chevron spring. The appropriate shape and material properties are proposed to adjust the required characteristics of chevron spring in the three modes of flexibility. Also, several samples of chevron spring are manufactured and experimented. It is shown that the predicted values agree well tile results obtained from experiments.

  • PDF

Finite Element Analysis and Evaluation of Rubber Spring for Railway Vehicle (철도차량용 고무스프링 특성해석 및 평가)

  • Woo, Chang-Su;Kim, Wan-Doo;Choi, Byung-Ik;Park, Hyun-Sung;Kim, Kyung-Sik
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.8
    • /
    • pp.773-778
    • /
    • 2009
  • Chevron rubber springs are used in primary suspensions for rail vehicle. Chevron rubber spring have function which reduce vibration and noise, support load carried in operation of rail vehicle. Prediction and evaluation of characteristics are very important in design procedure to assure the safety and reliability of the rubber spring. The computer simulation using the nonlinear finite element analysis program executed to predict and evaluate the load capacity and stiffness for the chevron spring. The non-linear properties of rubber which are described as strain energy functions are important parameters. These are determined by material tests which are uniaxial tension, equi-biaxial tension and shear test. The appropriate shape and material properties are proposed to adjust the required characteristics of rubber springs in the three modes of flexibility.

A Study on the Effect of Changes in Chevron Rubber Characteristics on the Vibrational Ride Comfort Level of a Subway Vehicle (도시철도차량 세브론 고무 특성 변화가 진동승차감 레벨에 미치는 영향 연구)

  • Park, Nam Cheol;Koo, Jeong Seo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.15 no.2
    • /
    • pp.57-65
    • /
    • 2016
  • The suspension system of a subway vehicle is composed of $1^{st}$ and $2^{nd}$ springs. The suspension system is the most important parameter in determining the vibration ride comfort. If the $1^{st}$ suspension spring is designed as a spring with strong stiffness to improve the running stability at high speed, it causes vehicle vibrations. In this paper, by testing and analyzing changes of the characteristics of Chevron springs, which have been the primary suspension springs used for about 20 years, we study how changing the characteristics affects vehicle acceleration and ride comfort. The lateral and longitudinal vibrational ride comfort index levels were lower than the vertical ones. Therefore, as increasing the stiffness of Chevron springs has the greatest effect on the vertical vibrational ride comfort index level, a countermeasure for vertical vibration reduction is needed when the stiffness increases owing to aging. Finally, maintenance guidelines, including the replacement time for the Chevron rubber, were proposed based on these findings.

Modeling and Experimental Response Characterization of the Chevron-type Bi-stable Micromachined Actuator (Chevron형 bi-stable MEMS 구동기의 모델링 및 실험적 응답특성 분석)

  • 황일한;심유석;이종현
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.2
    • /
    • pp.203-209
    • /
    • 2004
  • Compliant bi-stable mechanism allows two stable states within its operation range staying at one of the local minimum states of the potential energy. Energy storage characteristics of the bi-stable mechanism offer two distinct and repeatable stable states, which require no power input to maintain it at each stable state. This paper suggests an equivalent model of the chevron-type bi-stable microactuator using the equivalent spring stiffness in the rectilinear and the rotational directions. From this model the range of spring stiffness where the bi-stable mechanism can be operated is analyzed and compared with the results of the FEA (Finite Element Analysis) using ANSYS for the buckling analysis, both of which show a good agreement. Based on the analysis, a newly designed chevron-type bi-stable MEMS actuator using hinges is suggested for the latch-up operation. It is found that the experimental response characteristics of around 36V for the bi-stable actuation for the 60$mu extrm{m}$ stroke correspond very well to the results of the equivalent model analysis after the change in cross-sectional area by the fabrication process is taken into account. Together with the resonance frequency experiment where 1760Hz is measured, it is shown that the chevron-type bi-stable MEMS actuator using hinges is applicable to the optical switch as an actuator.

Characteristics Evaluation and Useful Life Prediction of Rubber Spring for Railway Vehicle (전동차용 방진고무스프링 특성평가 및 사용수명 예측)

  • Woo, Chang-Su;Park, Dong-Chul
    • Proceedings of the KSR Conference
    • /
    • 2006.11b
    • /
    • pp.104-111
    • /
    • 2006
  • The non-linear properties of rubber material which are described as strain energy function are important parameter to design and evaluate of rubber spring. These are determined by material tests which are uni-axial tension and bi-axial tension. The computer simulation using the nonlinear element analysis program executed to predict and evaluate the load capacity and stiffness for chevron spring. In order to investigate the heat-aging effects on the rubber material properties, the acceleration test were carried out. Compression set results changes as the threshold are used for assessment of the useful life and time to threshold value were plotted against reciprocal of absolute temperature to give the Arrhenius plot. By using the compression set test, several useful life prediction for rubber material were proposed.

  • PDF