Isolated congenital aneurysm of the left atrium with intact pericardium is a rate anomaly, which usually presents with arrhythmia, cerebral embolism or abnormalities on routine chest X-ray. Surgery is indicated in most cases to eliminate a potential source of systemic emboli and arrhythmias. A 42-year-old woman having cervical cancer, she was suspected of having a left atrial aneurysm on review of chest X-ray and confirmed by echocardiography and cardiac catheterization. Surgical resection of Left atrial aneurysm was achieved without complication using median sternotomy with cardiopulmonary bypass. The postoperative course was uneventful.
Proceedings of the Korean Society of Computer Information Conference
/
2021.01a
/
pp.31-32
/
2021
신종 코로나바이러스 감염증(Coronavirus disease 2019; COVID-19)이 빠르게 확산됨에 따라 세계적인 전염병 대유행인 팬데믹(Pandemic)으로 선언되었다. 감염자들은 꾸준히 증가하고 있고 최근에는, 무증상 감염자들이 나타나고 있어 의심 환자를 조기에 판단하고 선별할 수 있는 기술이 필요하다. 본 논문에서는 흉부 방사선 검사(chest Radiography; CXR) 영상을 딥러닝(Deep Learning)하여 정상인, 폐렴 환자, 코로나바이러스 감염자를 분류할 수 있도록 한다.
Chest X-ray radiography and computed tomography, the two mainstay modalities in thoracic radiology, are under active investigation with deep learning technology, which has shown promising performance in various tasks, including detection, classification, segmentation, and image synthesis, outperforming conventional methods and suggesting its potential for clinical implementation. However, the implementation of deep learning in daily clinical practice is in its infancy and facing several challenges, such as its limited ability to explain the output results, uncertain benefits regarding patient outcomes, and incomplete integration in daily workflow. In this review article, we will introduce the potential clinical applications of deep learning technology in thoracic radiology and discuss several challenges for its implementation in daily clinical practice.
Artificial intelligence (AI) technology is actively being applied for the interpretation of medical imaging, such as chest X-rays. AI-based software medical devices, which automatically detect various types of abnormal findings in chest X-ray images to assist physicians in their interpretation, are actively being commercialized and clinically implemented in Korea. Several important issues need to be considered for AI-based detection assistant tools to be applied in clinical practice: the evaluation of performance and efficacy prior to implementation; the determination of the target application, range, and method of delivering results; and monitoring after implementation and legal liability issues. Appropriate decision making regarding these devices based on the situation in each institution is necessary. Radiologists must be engaged as medical assessment experts using the software for these devices as well as in medical image interpretation to ensure the safe and efficient implementation and operation of AI-based detection assistant tools.
Kim, Gye-Su;Lee, Jae-Cheol;Lee, Seung-Jun;Yoo, Chul-Gyu;Kim, Young-Whan;Han, Sung-Koo;Shim, Young-Soo
Tuberculosis and Respiratory Diseases
/
v.43
no.1
/
pp.113-116
/
1996
A previously healthy 59-year old male patient was admitted due to cough and abnormal chest x-ray. Cough started 5 months ago and persisted. Two months before admission, abnormality in chest PA was detected. He had no symptom other than cough. He was nonsmoker and physical examination revealed no abnormal finding. His chest X-ray showed ill-defined $2{\times}1\;cm$ ovoid infiltration in left middle lung field. On chest computed tomography, it was located in the subpleural region of posterobasal segment of left lower lobe. Mediastinal lymphadenopathy was absent. Blood test and sputum examination were not diagnostic. Fluoroscopy-guided percutaneous needle biopsy revealed pulmonary cryptococcosis. After central nervous system involvement was excluded by spinal tap, oral ketoconazole therapy was started. The lesion decreased in size after 8 weeks of therapy and almost disappeared on follow-up chest X-ray 4 months later.
PA(postero-anterior) and AP(antero-posterior) chest projections are the most sought-after types of all kinds of projections. But if a radiological technologist puts wrong information about the position in the computer, the orientation of left and right side of an image would be reversed. In order to solve this problem, we utilized CNN(convolutional neural network) which has recently utilized a lot for studies of medical imaging technology and rule-based system. 70% of 111,622 chest images were used for training, 20% of them were used for testing and 10% of them were used for validation set in the CNN experiment. The same amount of images which were used for testing in the CNN experiment were used in rule-based system. Python 3.7 version and Tensorflow r1.14 were utilized for data environment. As a result, rule-based system had 66% accuracy on evaluating whether the orientation reversal on chest x-ray image. But the CNN had 97.9% accuracy on that. Being overcome limitations by CNN which had been shown on rule-based system and shown the high accuracy can be considered as a meaningful result. If some problems which can occur for tasks of the radiological technologist can be separated by utilizing CNN, It can contribute a lot to optimize workflow.
Opened a court in February 10, 2006, a rule of safety management of the diagnosis radiation system was promulgated for safety of the radiation worker, patients and patients' family members. The purpose of this rule is to minimize the risk of being exposed to radiation during the process of handling X-ray. For this reason, we manufactured shielding device of mobile X-ray unit collimator for diminution of skin dose. Shielding device is made to a thickness of Pb 0.375mm. For portable chest radiography, we measured skin dose 50cm from center ray to 200cm at intervals of 20cm by Unfors Xi detector. As a result, a rule of safety management of the diagnosis radiation system has been strengthened. But there are exceptions, such as ER, OR, ICU to this rule. So shielding device could contribute to protect unnecessary radiation exposure and improve nation's health.
This study was carried out to investigate radiographical and operating conditions of X-ray units and exposure doses to patients during chest radiography, so that the results could provide basic data used for reducing the exposure dose and for providing the diagnostic information with better quality. The conditions and exposure doses of 100 X-ray units mainly used for chest radiography were examined and also 100 radiological technologists mainly handling those apparatus at 76 medical facilities in Pusan were surveyed using a questionnaire from October 1 to December 31 in 1995. The following results were obtained from the study : 1. It was found that most units were capable of taking a high tube voltage radiography by showing 67% of the units equipped with the maximum tube voltage of 150 kV, 94% with more than 500 mA for the rating capacity and 85% with the full wave type of a signal phase. 2. For actual chest radiographical conditions, however, 80% of the units were operated at $60{\sim}100\;kVp$ and only 14% at 100 kVp and over for the high tube voltage. 3. The average exposure time was less than 0.1 second, and eighty four percent of the units adapted the X-ray tube currents ranging from 200 to 300 mA, 80% the focus-film distances between 180 and 210 cm, and 63% the focus sizes of more than 2.0 mm. 4. Most units(98%) employed additional filters made of aluminum, 75% the thickness of filters less than 2.0 mm, and only 2 units the compound filters. 5. Ortho chromatic system was only adopted in 13% of screen film system for the units, and 73% used the grid ratio at 8 : 1 for the low tube voltage during chest radiography. 6. The average exposure dose of all X-ray units during chest radiography was $371\;{\mu}Sv$ with a difference of about 16 times between the minimum to the maximum, and $386\;{\mu}Sv$ both at hospitals and at health centers, followed by $380\;{\mu}Sv$ at general hospitals and $263\;{\mu}Sv$ at university hospitals without showing any statistically significant differences. In conclusion, since patients during chest radiography at medical facilities in Pusan exposed to high levels of radiation, it is recommended that appropriate added filters and grids necessary for the high tube voltage radiography and high-speed screen systems should be adopted and used as soon as possible in order to reduce exposure dose to the patients.
Asymetric system have been introduced in these years by KODAK company nam of Insight system for the purpose of improve the chest image. We have had a problem of chest radiology that it is very difficult to visualize the lung field and modiastinal region at one shot. That's why we are the RT using the technique of high voltage hard quality radiography in chest radiography. Also it is known the c-type wide latitude film can lift up the density of mediastinal structures. Authors investigated the photographic characteristics and physical structure of Insight system. Method 1. Investigated the structure of Emulsion layer. Calculated the particle size of Insight system using SEM(Scanning Electron Microscope). 2. Photographic characteristics has been compared the Insight system with the ortho KM/MG combination in $60{\sim}120kV$ range. Results 1. The particle size of backside film were investigated about 2 times larger that of front side film. 2. The front and backscreen's thickness ratio was detected 1 : 3.87, that the backscreen's thickness was thicker than frontscreen. 3. At the view point of photographic characteristics the frontside of insight system make up the contrast, backside make up the density at low exposure lesion.
Testing TB in chest X-ray images is a typical method to diagnose presence and magnitude of PTB lesion. However, the method has limitation due to inter-reader variability. Therefore, it is essential to overcome this drawback with automatic interpretation. In this study, we propose a novel method for detection of PTB using SegNet, which is a deep learning architecture for semantic pixel wise image labelling. SegNet is composed of a stack of encoders followed by a corresponding decoder stack which feeds into a soft-max classification layer. We modified parameters of SegNet to change the number of classes from 12 to 2 (TB or none-TB) and applied the architecture to automatically interpret chest radiographs. 552 chest X-ray images, provided by The Korean Institute of Tuberculosis, used for training and test and we constructed a receiver operating characteristic (ROC) curve. As a consequence, the area under the curve (AUC) was 90.4% (95% CI:[85.1, 95.7]) with a classification accuracy of 84.3%. A sensitivity was 85.7% and specificity was 82.8% on 431 training images (TB 172, none-TB 259) and 121 test images (TB 63, none-TB 58). This results show that detecting PTB using SegNet is comparable to other PTB detection methods.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.