• 제목/요약/키워드: Chest X-ray Images

검색결과 118건 처리시간 0.027초

흉부 왼쪽 엑스선검사 시 위치 잡기의 중요성 (The Importance of Positioning in Left Lateral Chest X-Ray Examination)

  • 조평곤
    • 대한방사선기술학회지:방사선기술과학
    • /
    • 제46권4호
    • /
    • pp.287-294
    • /
    • 2023
  • This study was conducted to ultimately reduce unnecessary radiation exposure by emphasizing the need and importance of correct positioning by examining the positioning relationship of anatomical structures in the human body and changes in X-ray images according to changes in patient positioning during the left lateral chest X-ray examination. This study investigated and analyzed previously published papers and books on the left lateral chest X-ray examination to find out the importance of positioning in the left lateral chest X-ray examination. To find out the importance of correct positioning in the left lateral chest X-ray, we compared three images of incorrectly positioned right thorax and left thorax rotated forward and the lower median surface of the body leaning against the image receptor. In the left lateral chest examination, a distorted image was obtained in which the shape of the anatomical structure observed in the image was changed according to the presence or absence of rotation of the patient and the inclination of the median visual surface. X-ray images with the most accurate and large amount of information were obtained from X-ray images with the correct positioning performed during left lateral chest X-ray examination. Therefore, It is believed that the left lateral chest X-ray examination will have beneficial effects such as providing accurate medical information, preventing misdiagnosis, reducing social costs, and ultimately reducing radiation exposure.

An Enhanced Algorithm for an Optimal High-Frequency Emphasis Filter Based on Fuzzy Logic for Chest X-Ray Images

  • Shin, Choong-Ho;Lee, Jung-Jai;Jung, Chai-Yeoung
    • Journal of information and communication convergence engineering
    • /
    • 제13권4호
    • /
    • pp.264-269
    • /
    • 2015
  • The chest X-ray image cannot be focused in the same manner that optical lenses are and the resultant image generally tends to be slightly blurred. Therefore, the methods to improve the quality of chest X-ray image have been studied. In this paper, the inherent noises of the input images are suppressed by adding the Laplacian image to the original. First, the chest X-ray image using an Gaussian high pass filter and an optimal high frequency emphasis filter has shown improvements in the edges and contrast of flat areas. Second, using fuzzy logic_histogram equalization, each pixel of the chest X-ray image shows the normal distribution of intensities that are not overexposed. As a result, the proposed method has shown the enhanced edge and contrast of the images with the noise canceling effect.

SVM on Top of Deep Networks for Covid-19 Detection from Chest X-ray Images

  • Do, Thanh-Nghi;Le, Van-Thanh;Doan, Thi-Huong
    • Journal of information and communication convergence engineering
    • /
    • 제20권3호
    • /
    • pp.219-225
    • /
    • 2022
  • In this study, we propose training a support vector machine (SVM) model on top of deep networks for detecting Covid-19 from chest X-ray images. We started by gathering a real chest X-ray image dataset, including positive Covid-19, normal cases, and other lung diseases not caused by Covid-19. Instead of training deep networks from scratch, we fine-tuned recent pre-trained deep network models, such as DenseNet121, MobileNet v2, Inception v3, Xception, ResNet50, VGG16, and VGG19, to classify chest X-ray images into one of three classes (Covid-19, normal, and other lung). We propose training an SVM model on top of deep networks to perform a nonlinear combination of deep network outputs, improving classification over any single deep network. The empirical test results on the real chest X-ray image dataset show that deep network models, with an exception of ResNet50 with 82.44%, provide an accuracy of at least 92% on the test set. The proposed SVM on top of the deep network achieved the highest accuracy of 96.16%.

A Tuberculosis Detection Method Using Attention and Sparse R-CNN

  • Xu, Xuebin;Zhang, Jiada;Cheng, Xiaorui;Lu, Longbin;Zhao, Yuqing;Xu, Zongyu;Gu, Zhuangzhuang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제16권7호
    • /
    • pp.2131-2153
    • /
    • 2022
  • To achieve accurate detection of tuberculosis (TB) areas in chest radiographs, we design a chest X-ray TB area detection algorithm. The algorithm consists of two stages: the chest X-ray TB classification network (CXTCNet) and the chest X-ray TB area detection network (CXTDNet). CXTCNet is used to judge the presence or absence of TB areas in chest X-ray images, thereby excluding the influence of other lung diseases on the detection of TB areas. It can reduce false positives in the detection network and improve the accuracy of detection results. In CXTCNet, we propose a channel attention mechanism (CAM) module and combine it with DenseNet. This module enables the network to learn more spatial and channel features information about chest X-ray images, thereby improving network performance. CXTDNet is a design based on a sparse object detection algorithm (Sparse R-CNN). A group of fixed learnable proposal boxes and learnable proposal features are using for classification and location. The predictions of the algorithm are output directly without non-maximal suppression post-processing. Furthermore, we use CLAHE to reduce image noise and improve image quality for data preprocessing. Experiments on dataset TBX11K show that the accuracy of the proposed CXTCNet is up to 99.10%, which is better than most current TB classification algorithms. Finally, our proposed chest X-ray TB detection algorithm could achieve AP of 45.35% and AP50 of 74.20%. We also establish a chest X-ray TB dataset with 304 sheets. And experiments on this dataset showed that the accuracy of the diagnosis was comparable to that of radiologists. We hope that our proposed algorithm and established dataset will advance the field of TB detection.

흉부 X-선 영상을 이용한 14 가지 흉부 질환 분류를 위한 Ensemble Knowledge Distillation (Ensemble Knowledge Distillation for Classification of 14 Thorax Diseases using Chest X-ray Images)

  • 호티키우칸;전영훈;곽정환
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2021년도 제64차 하계학술대회논문집 29권2호
    • /
    • pp.313-315
    • /
    • 2021
  • Timely and accurate diagnosis of lung diseases using Chest X-ray images has been gained much attention from the computer vision and medical imaging communities. Although previous studies have presented the capability of deep convolutional neural networks by achieving competitive binary classification results, their models were seemingly unreliable to effectively distinguish multiple disease groups using a large number of x-ray images. In this paper, we aim to build an advanced approach, so-called Ensemble Knowledge Distillation (EKD), to significantly boost the classification accuracies, compared to traditional KD methods by distilling knowledge from a cumbersome teacher model into an ensemble of lightweight student models with parallel branches trained with ground truth labels. Therefore, learning features at different branches of the student models could enable the network to learn diverse patterns and improve the qualify of final predictions through an ensemble learning solution. Although we observed that experiments on the well-established ChestX-ray14 dataset showed the classification improvements of traditional KD compared to the base transfer learning approach, the EKD performance would be expected to potentially enhance classification accuracy and model generalization, especially in situations of the imbalanced dataset and the interdependency of 14 weakly annotated thorax diseases.

  • PDF

흉부 X-선 영상에서 심장비대증 분류를 위한 합성곱 신경망 모델 제안 (Proposal of a Convolutional Neural Network Model for the Classification of Cardiomegaly in Chest X-ray Images)

  • 김민정;김정훈
    • 한국방사선학회논문지
    • /
    • 제15권5호
    • /
    • pp.613-620
    • /
    • 2021
  • 본 논문에서는 흉부 X선 영상에서 정상 심장과 비정상 심장(심장비대)을 분류할 수 있는 합성곱 신경망 모델을 제안하고자 한다. 학습 및 테스트 데이터로는 경북대학교병원에 내원하여 정상과 심장비대를 진단받은 환자들의 흉부 X-선 이미지를 획득하여 사용하였다. 제안된 합성곱 신경망 모델을 이용하였을 때의 정상 심장 및 비정상 심장(심장비대) 분류 정확도는 99.88%였다. 정상 심장 영상을 테스트 데이터로 사용하였을 때의 정확도, 정밀도, 재현율 및 F1 Score는 95%, 100%, 90%, 96%였다. 비정상 심장(심장비대) 영상을 테스트 데이터로 사용하였을 때의 정확도, 정밀도, 재현율 및 F1 Score는 95%, 92%, 100% 및 96%였다. 이러한 학습 및 테스트 분류 결과로 제안된 합성곱 신경망 모델은 흉부 X-선 영상의 특징 추출 및 분류에서 매우 우수한 성능을 보여주고 있다고 판단된다. 본 논문에서 제안하는 합성곱 신경망 모델은 흉부 X-선 영상의 질환 분류에 있어 유용한 결과를 보여줄 것으로 판단되며, 다른 의료 영상에서도 동일한 결과를 나타내는지 알아보기 위하여 추가적인 연구가 이루어져야 할 것이다.

간접촬영기의 디지털 영상 변환 장치 적용에 대한 연구 (A study on the digital image transfer application mass chest X-ray system up-grade)

  • 김선칠;박종삼;이준일
    • 대한방사선기술학회지:방사선기술과학
    • /
    • 제26권3호
    • /
    • pp.13-17
    • /
    • 2003
  • 현대 병원들은 보다 나은 의료서비스를 위해 디지털 시스템을 갖추고자 노력하고 있다. 하지만, 아직도 많은 부분은 아날로그 시스템과 Film 출력에 의존하고 있다. 본 연구는 차량 이동형 흉부 전용 간접 촬영기에 디지털 영상 변환 장치와 이에 연동되는 X-ray 발생장치의 제어 시스템, 출력 시스템을 디지털시스템으로 변환, 연동시켰으며, 획득한 영상을 간접 촬영 전용프로그램에서 편리하게 판독 할 수 있도록 설계하여 임상에 적용시켰다. 이러한 과정에서 발생되는 문제점을 현실적으로 해결하였으며, 방사선사 입장에서 업무의 효율성을 높이고자 몇 가지 프로그램을 개발 적용하였다. 향후 미래지향적인 디지털의료 영상 시스템을 갖추기 위해 각종 프로그램과 시스템과도 연동이 되도록 설계하여 임상에 적용하여 우수성을 입증하였다.

  • PDF

컨볼루션 뉴럴 네트워크 기반의 딥러닝을 이용한 흉부 X-ray 영상의 분류 및 정확도 평가 (Evaluation of Classification and Accuracy in Chest X-ray Images using Deep Learning with Convolution Neural Network)

  • 송호준;이은별;조흥준;박세영;김소영;김현정;홍주완
    • 한국방사선학회논문지
    • /
    • 제14권1호
    • /
    • pp.39-44
    • /
    • 2020
  • 본 연구에서는 CNN과 빅데이터 기술을 이용한 Deep Learning을 통해 흉부 X-ray 영상 분류 및 정확성 연구에 대하여 알아보고자 한다. 총 5,873장의 흉부 X-ray 영상에서 Normal 1,583장, Pneumonia 4,289장을 사용하였다. 데이터 분류는 train(88.8%), validation(0.2%), test(11%)로 분류하였다. Convolution Layer, Max pooling layer pool size 2×2, Flatten layer, Image Data Generator로 구성하였다. Convolution layer가 3일 때와 4일 때 각각 filter 수, filter size, drop out, epoch, batch size, 손실함수 값을 설정하였다. test 데이터로 Convolution layer가 4일 때, filter 수 64-128-128-128, filter size 3×3, drop out 0.25, epoch 5, batch size 15, 손실함수 RMSprop으로 설정 시 정확도가 94.67%였다. 본 연구를 통해 높은 정확성으로 분류가 가능하였으며, 흉부 X-ray 영상뿐만 아니라 다른 의료영상에서도 많은 도움이 될 것으로 사료된다.

패치 특징 코어세트 기반의 흉부 X-Ray 영상에서의 병변 유무 감지 (Leision Detection in Chest X-ray Images based on Coreset of Patch Feature)

  • 김현빈;전준철
    • 인터넷정보학회논문지
    • /
    • 제23권3호
    • /
    • pp.35-45
    • /
    • 2022
  • 현대에도 일부 소외된 지역에서는 의료 인력의 부족으로 인해 위·중증 환자에 대한 치료가 지연되는 경우가 많다. 의료 데이터에 대한 분석을 자동화하여 의료 서비스의 접근성 문제 및 의료 인력 부족을 해소하고자 하는 연구가 계속되고 있다. 컴퓨터 비전 기반의 진료 자동화는 훈련 목적에 대한 데이터 수집 및 라벨링 작업에서 많은 비용이 요구된다. 이러한 점은 희귀질환이나 시각적으로 뚜렷하게 정의하기 어려운 병리적 특징 및 기전을 구분하는 작업에서 두드러진다. 이상 탐지는 비지도 학습 전략을 채택함으로써 데이터 수집 비용을 크게 절감할 수 있는 방법으로 주목된다. 본 논문에서는 기존의 이상 탐지 기법들을 기반으로, 흉부 X-RAY 영상에 대해 이상 탐지를 수행하는 방법을 다음과 같이 제안한다. (1) 최적 해상도로 샘플링된 의료 영상의 색상 범위를 정규화한다. (2) 무병변 영상으로부터 패치 단위로 구분된 중간 수준 특징 집합을 추출하여 그 중 높은 표현력을 가진 일부 특징 벡터들을 선정한다. (3) 최근접 이웃 탐색 알고리즘을 기반으로 미리 선정된 무병변(정상) 특징 벡터들과의 차이를 측정한다. 본 논문에서는 PA 방식으로 촬영된 흉부 X-RAY 영상들에 대한 제안 시스템의 이상 탐지 성능을 세부 조건에 따라 상세히 측정하여 제시한다. PadChest 데이터세트로부터 추출한 서브세트에 대해 0.705 분류 AUROC를 보임으로써 의료 영상에 대한 이상 탐지 적용의 효과를 입증하였다. 제안 시스템은 의료 기관의 임상 진단 워크플로우를 개선하는 데에 유용하게 사용될 수 있으며, 의료 서비스 접근성이 낮은 지역에서의 조기 진단을 효율적으로 지원할 수 있다.

화상인식과 X선 영상에의 응용에 관한 연구 (Image Recognition and Its Application to Radiograph)

  • Song, Chae-Uk;Yea, Byeong-Deok
    • 한국정보통신학회논문지
    • /
    • 제5권4호
    • /
    • pp.829-840
    • /
    • 2001
  • 본 연구는 디지털 화상처리기술의 대표적인 응용분야로서 주목받고 있는 X선 사진을 대상으로 한 계산기 지원진단에 관한 연구의 일종으로서, 폐의 중요한 질환중 하나인 폐기종의 진단을 지원하는 계산기 시스템에 관한 연구이다. 구체적인 내용으로서는 흉부X선 사진으로부터 말초혈관을 자동추출하고, 추출된 혈관을 토대로 여러가지의 특징량을 구하여, 최종적으로 폐기종의 병세진행도를 정량평가하는 시스템에 관한 연구이다. 혈관 도형을 추출하여 병의 진행 정도를 정량적으로 평가하기 위해 본 연구에서 제안한 평가방법을 10장의 X선 사진에 설정된 189개의 관심영역에 적용하여, 의사의 평가치와 본 연구의 제안방법에 의한 평가치를 비교·검토함으로써 그 유효성을 검증하였다.

  • PDF