• Title/Summary/Keyword: Cheng model

Search Result 453, Processing Time 0.025 seconds

Comparison of a Groundwater Simulation-Optimization Numerical Model with the Analytical Solutions (해안지하수개발 최적화수치모델과 해석해의 비교연구)

  • Shi, Lei;Cui, Lei;Lee, Chan-Jong;Park, Nam-Sik
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2009.05a
    • /
    • pp.905-908
    • /
    • 2009
  • In the management of groundwater in coastal areas, saltwater intrusion associated with extensive groundwater pumping, is an important problem. The groundwater optimization model is an advanced method to study the aquifer and decide the optimal pumping rates or optimal well locations. Cheng and Park gave the analytical solutions to the optimization problems basing on Strack's analytical solution. However, the analytical solutions have some limitations of the property of aquifer, boundary conditions, and so on. A simulation-optimization numerical method presented in this study can deal with non-homogenous aquifers and various complex boundary conditions. This simulation-optimization model includes the sharp interface solution which solves the same governing equation with Strack's analytical solution, therefore, the freshwater head and saltwater thickness should be in the same conditions, that can lead to the comparable results in optimal pumping rates and optimal well locations for both of the solutions. It is noticed that the analytical solutions can only be applied on the infinite domain aquifer, while it is impossible to get a numerical model with infinite domain. To compare the numerical model with the analytical solutions, calculation of the equivalent boundary flux was planted into the numerical model so that the numerical model can have the same conditions in steady state with analytical solutions.

  • PDF

A study on lubrication Properties of a Dimple Pattern using an Average Flow Analysis with a Contact Model of Asperities (돌기 접촉 모델과 평균 유동 분석을 이용한 딤플 패턴의 윤활 특성에 관한 연구)

  • Kim, Mi-Ru;Lee, Seung-Jun;Li, Liang;Lee, Deug-Woo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.15 no.6
    • /
    • pp.41-49
    • /
    • 2016
  • To evaluate lubrication properties by surface roughness under boundary and mixed lubrication, a new approach is suggested by both asperity flow and contact with stochastic characteristics. Many researchers already have studied the effect of surface roughness on flow. But, it has become important to research of the phenomenon of asperities contact in surfaces because the growth of asperities contact area under heavy load conditions. In this paper, flow factors in the average flow model derived by Patir and Cheng were used, and a multi-asperity contact model was included to calculate lubrication properties of a surface with a randomly generated rough surface. A numerical analysis using the average Reynolds equation with both the average flow model and the asperity contact model was conducted, and the results were compared with those from previous research. The results showed that the influence of asperities on lubrication and the friction coefficient changed rapidly on application of contact model.

Prediction model of surface subsidence for salt rock storage based on logistic function

  • Wang, Jun-Bao;Liu, Xin-Rong;Huang, Yao-Xian;Zhang, Xi-Cheng
    • Geomechanics and Engineering
    • /
    • v.9 no.1
    • /
    • pp.25-37
    • /
    • 2015
  • To predict the surface subsidence of salt rock storage, a new surface subsidence basin model is proposed based on the Logistic function from the phenomenological perspective. Analysis shows that the subsidence curve on the main section of the model is S-shaped, similar to that of the actual surface subsidence basin; the control parameter of the subsidence curve shape can be changed to allow for flexible adjustment of the curve shape. By using this model in combination with the MMF time function that reflects the single point subsidence-time relationship of the surface, a new dynamic prediction model of full section surface subsidence for salt rock storage is established, and the numerical simulation calculation results are used to verify the availability of the new model. The prediction results agree well with the numerical simulation results, and the model reflects the continued development of surface subsidence basin over time, which is expected to provide some insight into the prediction and visualization research on surface subsidence of salt rock storage.

Pile tip grouting diffusion height prediction considering unloading effect based on cavity reverse expansion model

  • Jiaqi Zhang;Chunfeng Zhao;Cheng Zhao;Yue Wu;Xin Gong
    • Geomechanics and Engineering
    • /
    • v.37 no.2
    • /
    • pp.97-107
    • /
    • 2024
  • The accurate prediction of grouting upward diffusion height is crucial for estimating the bearing capacity of tip-grouted piles. Borehole construction during the installation of bored piles induces soil unloading, resulting in both radial stress loss in the surrounding soil and an impact on grouting fluid diffusion. In this study, a modified model is developed for predicting grout diffusion height. This model incorporates the classical rheological equation of power-law cement grout and the cavity reverse expansion model to account for different degrees of unloading. A series of single-pile tip grouting and static load tests are conducted with varying initial grouting pressures. The test results demonstrate a significant effect of vertical grout diffusion on improving pile lateral friction resistance and bearing capacity. Increasing the grouting pressure leads to an increase in the vertical height of the grout. A comparison between the predicted values using the proposed model and the actual measured results reveals a model error ranging from -12.3% to 8.0%. Parametric analysis shows that grout diffusion height increases with an increase in the degree of unloading, with a more pronounced effect observed at higher grouting pressures. Two case studies are presented to verify the applicability of the proposed model. Field measurements of grout diffusion height correspond to unloading ratios of 0.68 and 0.71, respectively, as predicted by the model. Neglecting the unloading effect would result in a conservative estimate.

Study on equity of taxation for non-residential property by analysis of actual transaction price (실거래가격 분석을 통한 비주거용 부동산의 과세형평성 연구)

  • Kim, Hyoung June
    • Journal of the Korean Data and Information Science Society
    • /
    • v.27 no.3
    • /
    • pp.639-651
    • /
    • 2016
  • "Law on price announcement for real estate" which was revised as of Jan. 19, 2016 (will be enforced as of Sep. 1, 2016) decided the introduction of 'Price announcement system for non-residential property' for the first time. However, its introduction seems to be delayed based on two reasons. Firstly the methodology for introduction of non-property system is not definitized, despite many problems were brought up for current tax base of non-residential property. In addition, changes in tax base will place a burden on the government. In this regard, this study analyzed actual transaction price data throughout one year to analyze equity of taxation for non-residential property and to find major factor which affects on the tax base, in relation with the change of current public announcement system to actual transaction based system. And this is the first study that applied actual transaction price to non-residential property.

In Vivo Experimental Study on the Effects of Fluid in Increasing the Efficiency of Radiofrequency Ablation

  • Sun, Yi-Xin;Cheng, Wen;Han, Xue;Liu, Zhao;Wang, Qiu-Cheng;Shao, Hua
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.14
    • /
    • pp.5799-5804
    • /
    • 2014
  • Background: Radiofrequency ablation (RFA) is the most widely used and studied method internationally for the local treatment of liver tumors. However, the extension of coagulation necrosis in one RFA procedure is limited and incomplete coverage of the damaged area can lead to a high local recurrence rate. Objective: In this study, we compared the effects of different solutions in enhancing hepatic radiofrequency by establishing a rabbit VX2 liver cancer model. We also determined the optimal solution to maximise effects on the extent of RFA-induced coagulation necrosis. Methods: Thirty VX2 tumor rabbits were randomly assigned to five groups: group A, RFA alone; group B, RFA with anhydrous ethanol injection; group C, RFA with 5% hypertonic saline injection; group D, RFA with lidocaine injection; and group E, RFA with a mixed solution. Routine ultrasound examinations and contrast-enhanced ultrasound (CEUS) of the ablation areas were performed after RFA. Then, we measured the major axis and transverse diameter and compared the areas of coagulation necrosis induced by RFA. Results: The mean ablation area range increased in groups B, C and especially E, and the scopes were greater compared with group A. Preoperative application of anhydrous ethanol, hypertonic saline, lidocaine and the mixed solution (groups B, C, D and E, respectively) resulted in larger coagulation necrosis areas than in group A (p<0.05). Among the groups, the coagulation necrosis areas in group E was largest, and the difference was statistically significant compared with other groups (p<0.05). Pathological findings were consistent with imaging results. Conclusions: A mixture of dehydrated alcohol, hypertonic saline and lidocaine injected with RFA increases the extent of coagulation necrosis in the liver with a single application, and the mixed solution is more effective than any other injection alone.

System identification of soil behavior from vertical seismic arrays

  • Glaser, Steven D.;Ni, Sheng-Huoo;Ko, Chi-Chih
    • Smart Structures and Systems
    • /
    • v.4 no.6
    • /
    • pp.727-740
    • /
    • 2008
  • A down hole vertical seismic array is a sequence of instruments installed at various depths in the earth to record the ground motion at multiple points during an earthquake. Numerous studies demonstrate the unique utility of vertical seismic arrays for studying in situ site response and soil behavior. Examples are given of analyses made at two sites to show the value of data from vertical seismic arrays. The sites examined are the Lotung, Taiwan SMART1 array and a new site installed at Jingliao, Taiwan. Details of the installation of the Jingliao array are given. ARX models are theoretically the correct process models for vertical wave propagation in the layered earth, and are used to linearly map deeper sensor input signals to shallower sensor output signals. An example of Event 16 at the Lotung array is given. This same data, when examined in detail with a Bayesian inference model, can also be explained by nonlinear filters yielding commonly accepted soil degradation curves. Results from applying an ARMAX model to data from the Jingliao vertical seismic array are presented. Estimates of inter-transducer soil increment resonant frequency, shear modulus, and damping ratio are presented. The shear modulus varied from 50 to 150 MPa, and damping ratio between 8% and 15%. A new hardware monitoring system - TerraScope - is an affordable 4-D down-hole seismic monitoring system based on independent, microprocessor-controlled sensor Pods. The Pods are nominally 50 mm in diameter, and about 120 mm long. An internal 16-bit micro-controller oversees all aspects of instrumentation, eight programmable gain amplifiers, and local signal storage.

Effect of hydrogen-rich water on the lactic acid level in metformin-treated diabetic rats under hypoxia

  • Zhao, Chuan;Guo, Yushu;Wang, Ruoxi;Cheng, Cheng;Chen, Xiangmei
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.25 no.6
    • /
    • pp.517-523
    • /
    • 2021
  • The present study aims to investigate the impact of hydrogen-rich water on the lactic acid level in metformin-treated diabetic rats under hypoxia. Thirty Sprague-Dawley rats were randomly divided into five groups, including normal diet group, and diabetes model (DM) group, DM + metformin treatment (DMM) group, DMM + hypoxia treatment (DMMH) group and DMMH + hydrogen-rich water (DMMHR) group. We found that the levels of lactic acid, pyruvate and lactate dehydrogenase were significantly lower in the blood of DMMHR group than DMMH group. Superoxide dismutase and glutathione levels in liver and heart were significantly higher in DMMH group after hydrogen-rich water treatment, while malondialdehyde and oxidized glutathione levels were decreased in DMMHR group when compared with DMMH group, which indicates that hydrogen-rich water could reduce oxidative stress. qPCR analysis demonstrated that that pro-apoptotic genes Bax/Caspase-3 were upregulated in DM group and metformin treatment suppressed their upregulation (DMM group). However, hypoxic condition reversed the effect of metformin on apoptotic gene expression, and hydrogen-rich water showed little effect on these genes under hypoxia. HE staining showed that hydrogen-rich water prevented myocardial fiber damages under hypoxia. In summary, we conclude that hydrogen-rich water could prevent lactate accumulation and reduce oxidant stress in diabetic rat model to prevent hypoxia-induced damages. It could be served as a potential agent for diabetes patients with metformin treatment to prevent lactic acidosis and reduce myocardial damages under hypoxic conditions.

Knowledge from recent investigations on sloshing motion in a liquid pool with solid particles for severe accident analyses of sodium-cooled fast reactor

  • Xu, Ruicong;Cheng, Songbai;Li, Shuo;Cheng, Hui
    • Nuclear Engineering and Technology
    • /
    • v.54 no.2
    • /
    • pp.589-600
    • /
    • 2022
  • Investigations on the molten-pool sloshing behavior are of essential value for improving nuclear safety evaluation of Core Disruptive Accidents (CDA) that would be possibly encountered for Sodium-cooled Fast Reactors (SFR). This paper is aimed at synthesizing the knowledge from our recent studies on molten-pool sloshing behavior with solid particles conducted at the Sun Yat-sen University. To better visualize and clarify the mechanism and characteristics of sloshing induced by local Fuel-Coolant Interaction (FCI), experiments were performed with various parameters by injecting nitrogen gas into a 2-dimensional liquid pool with accumulated solid particles. It was confirmed that under different particle-bed conditions, three representative flow regimes (i.e. the bubble-impulsion dominant, transitional and bed-inertia dominant regimes) are identifiable. Aimed at predicting the regime transitions during sloshing process, a predictive empirical model along with a regime map was proposed on the basis of experiments using single-sized spherical solid particles, and then was extended for covering more complex particle conditions (e.g. non-spherical, mixed-sized and mixed-density spherical particle conditions). To obtain more comprehensive understandings and verify the applicability and reliability of the predictive model under more realistic conditions (e.g. large-scale 3-dimensional condition), further experimental and modeling studies are also being prepared under other more complicated actual conditions.

3D finite element modelling of composite connection of RCS frame subjected to cyclic loading

  • Asl, Mohammad Hossein Habashizadeh;Chenaglou, Mohammad Reza;Abedi, Karim;Afshin, Hassan
    • Steel and Composite Structures
    • /
    • v.15 no.3
    • /
    • pp.281-298
    • /
    • 2013
  • Composite special moment frame is one of the systems that are utilized in areas with low to high seismicity to deal with earthquake forces. Composite moment frames are composed of reinforced concrete columns (RC) and steel beams (S); therefore, the connection region is a combination of steel and concrete materials. In current study, a three dimensional finite element model of composite connections is developed. These connections are used in special composite moment frame, between reinforced concrete columns and steel beams (RCS). Finite element model is discussed as a most reliable and low cost method versus experimental procedures. Based on a tested connection model by Cheng and Chen (2005), the finite element model has been developed under cyclic loading and is verified with experimental results. A good agreement between finite element model and experimental results was observed. The connection configuration contains Face Bearing Plates (FBPs), Steel Band Plates (SBPs) enveloping around the RC column just above and below the steel beam. Longitudinal column bars pass through the connection with square ties around them. The finite element model represented a stable response up to the first cycles equal to 4.0% drift, with moderately pinched hysteresis loops and then showed a significant buckling in upper flange of beam, as the in test model.