• Title/Summary/Keyword: Chemopreventive potential

Search Result 189, Processing Time 0.032 seconds

Curdione Inhibits Proliferation of MCF-7 Cells by Inducing Apoptosis

  • Li, Juan;Bian, Wei-He;Wan, Juan;Zhou, Jing;Lin, Yan;Wang, Ji-Rong;Wang, Zhao-Xia;Shen, Qun;Wang, Ke-Ming
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.22
    • /
    • pp.9997-10001
    • /
    • 2014
  • Background: Curdione, one of the major components of Curcuma zedoaria, has been reported to possess various biological activities. It thus might be a candidate anti-flammatory and cancer chemopreventive agent. However, the precise molecular mechanisms of action of curdione on cancer cells are still unclear. In this study, we investigated the effect of curdione on breast cancer. Materials and Methods: Xenograft nude mice were used to detect the effect of curdione on breast cancer in vivo; we also tested the effect of curdione on breast cancer in vitro by MTT, Flow cytometry, JC-I assay, and western blot. Results: Firstly, we found that curdione significantly suppressed tumor growth in a xenograft nude mouse breast tumor model in a dose-dependent manner. In addition, curdione treatment inhibited cell proliferation and induced cell apoptosis. Moreover, after curdione treatment, increase of impaired mitochondrial membrane potential occurred in a concentration dependent manner. Furthermore, the expression of apoptosis-related proteins including cleaved caspase-3, caspase-9 and Bax was increased in curdione treatment groups, while the expression of the anti-apoptotic Bcl-2 was decreased. Inhibitors of caspase-3 were used to confirm that curdione induced apoptosis. Conclusions: Overall, our observations first suggested that curdione inhibited the proliferation of breast cancer cells by inducing apoptosis. These results might provide some molecular basis for the anti-cancer activity of curdione.

Inhibitory effect of dietary turmeric (Curcuma longa L.) ethanol extract on DMBA-induced mammary carcinogenesis in rats (울금 투여에 의한 DMBA 유발 랫드 유선암화과정 억제효과)

  • Kim, Min Sook;Jeong, Kyu Shik;You, Mi-Kyoung;Kim, Hyeon-A
    • Food Science and Preservation
    • /
    • v.21 no.3
    • /
    • pp.301-307
    • /
    • 2014
  • The purpose of this study was to examine the potential of turmeric (Curcuma longa L.) to inhibit 7,12-dimethylbenz[a]anthracene (DMBA)-induced mammary carcinogenesis in rats. Female Sprague Dawley rats were fed a control diet (NC and DC) or an ethanol extract of turmeric (DT) diet until the end of the experiment. The rats in the DC and DT groups were administered a single dose of DMBA (50 mg/Kg) by oral gavages at 50 days of age. The turmeric ethanol extracts decreased the incidence and multiplicity of DMBA-induced mammary tumor. The turmeric ethanol extract significantly decreased the tumor cell proliferation. The turmeric also significantly decreased the tumor grade based on the degree of the tubule formation. The results suggest that the ethanol extract of turmeric has an inhibitory effect against mammary carcinogenesis, and that such chemopreventive effect may be related to the inhibition of the initiation and the proliferation of tumor cells.

The Root from Heracleum moellendorffii Exerts Anti-Inflammatory Activity via the Inhibition of NF-κB and MAPK Signaling Activation in LPS-Stimulated RAW264.7 Cells

  • Park, Su Bin;Kim, Ha Na;Kim, Jeong Dong;Park, Gwang Hun;Son, Ho-Jun;Eo, Hyun Ji;Song, Jeong Ho;Jeong, Hyung Jin;Jeong, Jin Boo
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2018.10a
    • /
    • pp.96-96
    • /
    • 2018
  • Although the roots of Heracleum moellendorffii (HM-R) have been long treated for inflammatory human diseases, scientific evidence for the anti-inflammatory activity of HM-R is not sufficient. In this study, we investigated anti-inflammatory activity and mechanism of action of HM-R in LPS-stimulated RAW264.7 cells. HM-R blocked LPS-induced NO and PGE2 production, but not HM-L. HM-R inhibited LPS-induced overexpression of iNOS, COX-2, $IL-1{\beta}$ and IL-6 in RAW264.7 cells. HM-R inhibited LPS-induced $NF-{\kappa}B$ signaling activation through blocking $I{\kappa}B-{\alpha}$ degradation and p65 nuclear accumulation. In addition, HM-R inhibited MAPK signaling activation by attenuating the phosphorylation of ERK1/2, p38 and JNK. Furthermore, HM-R inhibited attenuated LPS-mediated overexpression of the osteoclast-specific factors such as NFATc1, cathepsin K, MCP-1 and TRAP. These results indicate that HM-R may exert anti-inflammatory activity by inhibiting $NF-{\kappa}B$ and MAPK signaling activation. From these findings, HM-R has potential to be a candidate for the development of chemopreventive or therapeutic agents for the inflammation and inflammatory diseases.

  • PDF

Aloe vera Inhibits Proliferation of Human Breast and Cervical Cancer Cells and Acts Synergistically with Cisplatin

  • Hussain, Arif;Sharma, Chhavi;Khan, Saniyah;Shah, Kruti;Haque, Shafiul
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.7
    • /
    • pp.2939-2946
    • /
    • 2015
  • Many of the anti-cancer agents currently used have an origin in natural sources including plants. Aloe vera is one such plant being studied extensively for its diverse health benefits, including cancer prevention. In this study, the cytotoxic potential of Aloe vera crude extract (ACE) alone or in combination with cisplatin in human breast (MCF-7) and cervical (HeLa) cancer cells was studied by cell viability assay, nuclear morphological examination and cell cycle analysis. Effects were correlated with modulation of expression of genes involved in cell cycle regulation, apoptosis and drug metabolism by RT-PCR. Exposure of cells to ACE resulted in considerable loss of cell viability in a dose- and time-dependent fashion, which was found to be mediated by through the apoptotic pathway as evidenced by changes in the nuclear morphology and the distribution of cells in the different phases of the cell cycle. Interestingly, ACE did not have any significant cytotoxicity towards normal cells, thus placing it in the category of safe chemopreventive agent. Further, the effects were correlated with the downregulation of cyclin D1, CYP 1A1, CYP 1A2 and increased expression of bax and p21 in MCF-7 and HeLa cells. In addition, low dose combination of ACE and cisplatin showed a combination index less than 1, indicating synergistic growth inhibition compared to the agents applied individually. In conclusion, these results signify that Aloe vera may be an effective anti-neoplastic agent to inhibit cancer cell growth and increase the therapeutic efficacy of conventional drugs like cispolatin. Thus promoting the development of plant-derived therapeutic agents appears warranted for novel cancer treatment strategies.

The Effect of Hwangryunhaedoktang on Proliferations of Various Human Cancer Cells (황련해독탕이 수종의 인간 암세포 증식에 미치는 영향)

  • Sung, Hyun Kyung;Min, Sang Yeon;Kim, Jang Hyun
    • The Journal of Pediatrics of Korean Medicine
    • /
    • v.27 no.1
    • /
    • pp.59-68
    • /
    • 2013
  • Objectives The aim of this study is to investigate whether hwang-ryun-haedok-tang (HDT) affect proliferations of androgen-dependent LNCaP prostate cancer cells, androgen-independent PC-3, DU-145 prostate cancer cells, MCF-7 human breast cancer cells, A549, NCI-H292 human pulmonary cancer cells and K-562 human chronic myelogenous leukemia cells. Materials and Methods Effects of HDT on proliferations of each cancer cell line were investigated. 20,000 cells/well were plated in each well of 96-well culture plate. After 24 hrs, 0.01-10% of HDT in culture medium was added to cancer cells. The number of cells was counted by using SRB assay or direct cell counting method after 72 hours from drug treatment. Effect of baicalein or berebrine on proliferation was assessed according to the same method. Results (1) HDT inhibited proliferations of LNCaP, PC-3 and DU-145 prostate cancer cells. (2) HDT inhibited proliferation of MCF-7 breast cancer cells. (3) HDT also inhibited proliferations of A549, NCI-H292 pulmonary cancer cells and K-562 chronic myelogenous leukemia cells. (4) Baicalein and berberine also showed inhibitory effects on proliferations of prostate and breast cancer cells. Conclusion : HDT inhibited proliferations of human prostate, breast, pulmonary and blood cancer cells. These results suggest us the potential use of HDT as a chemopreventive or chemotherapeutic agent. Effect of HDT on human cancer should be further investigated using in vivo experimental models that can reflect pathophysiology of human cancer through another studies.

Mechanism of Chemoprevention against Colon Cancer Cells Using Combined Gelam Honey and Ginger Extract via mTOR and Wnt/β-catenin Pathways

  • Wee, Lee Heng;Morad, Noor Azian;Aan, Goon Jo;Makpol, Suzana;Ngah, Wan Zurinah Wan;Yusof, Yasmin Anum Mohd
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.15
    • /
    • pp.6549-6556
    • /
    • 2015
  • The PI3K-Akt-mTOR, $Wnt/{\beta}$-catenin and apoptosis signaling pathways have been shown to be involved in genesis of colorectal cancer (CRC). The aim of this study was to elucidate whether combination of Gelam honey and ginger might have chemopreventive properties in HT29 colon cancer cells by modulating the mTOR, $Wnt/{\beta}$-catenin and apoptosis signaling pathways. Treatment with Gelam honey and ginger reduced the viability of the HT29 cells dose dependently with $IC_{50}$ values of 88 mg/ml and 2.15 mg/ml respectively, their while the combined treatment of 2 mg/ml of ginger with 31 mg/ml of Gelam honey inhibited growth of most HT29 cells. Gelam honey, ginger and combination induced apoptosis in a dose dependent manner with the combined treatment exhibiting the highest apoptosis rate. The combined treatment downregulated the gene expressions of Akt, mTOR, Raptor, Rictor, ${\beta}$-catenin, $Gsk3{\beta}$, Tcf4 and cyclin D1 while cytochrome C and caspase 3 genes were shown to be upregulated. In conclusion, the combination of Gelam honey and ginger may serve as a potential therapy in the treatment of colorectal cancer through inhibiton of mTOR, $Wnt/{\beta}$ catenin signaling pathways and induction of apoptosis pathway.

Resveratrol Affects Protein Kinase C Activity and Promotes Apoptosis in Human Colon Carcinoma Cells

  • Fang, Jie-Yu;Li, Zhi-Hua;Li, Qiang;Huang, Wen-Sheng;Kang, Liang;Wang, Jian-Ping
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.12
    • /
    • pp.6017-6022
    • /
    • 2012
  • Background: Resveratrol has been reported to have potential chemopreventive and apoptosis-inducing properties in a variety of tumor cell lines. Objective: In this study, to investigate the effects of resveratrol on protein kinase C (PKC) activity and apoptosis in human colon carcinoma cells, we used HT-29 cells and examined the $PKC{\alpha}$ and ERK1/2 signaling pathways. Methods: To test the effects of resveratrol on the growth of HT-29 cells, the cells were exposed to varying concentrations and assessed with the the MTT cell-viability assay. Fluorescence-activated cell sorter (FACS) analysis was applieded to determine the effects of resveratrol on cell apoptosis. Western blotting was performed to determine the protein levels of $PKC{\alpha}$ and ERK1/2. In inhibition experiments, HT-29 cells were treated with G$\ddot{o}$6976 or PD98059 for 30 min, followed by exposure to $200{\mu}M$ resveratrol for 72 h. Results: Resveratrol had a significant inhibitory effect on HT-29 cell growth. FACS revealed that resveratrol induced apoptosis. Western blotting showed that e phosphorylation of $PKC{\alpha}$ and ERK1/2 was significantly increased in response to resveratrol treatment. Pre-treatment with $PKC{\alpha}$ and ERK1/2 inhibitors (G$\ddot{o}$6976 and PD98059) promoted apoptosis. Conclusion: Resveratrol has significant anti-proliferative effects on the colon cancer cell line HT-29. The PKC-ERK1/2 signaling pathway can partially mediate resveratrol-induced apoptosis of HT-29 cells.

Inhibitory Activity of Lonicera caerulea Against Cell Proliferation in Human Colorectal Cancer Cells (댕댕이나무(Lonicera caerulea)의 대장암세포 생육억제 활성)

  • An, Mi-Yun;Eo, Hyun Ji;Son, Ho-Jun;Park, Gwang Hun;Jeong, Jin Boo
    • Korean Journal of Plant Resources
    • /
    • v.33 no.4
    • /
    • pp.263-270
    • /
    • 2020
  • In this study, we evaluated the effect of the extracts from Lonicera caerulea leaves (LCLE), branches (LCBE) and fruits (LCFE) on the cell growth and migration in human colorectal cancer cells, HCT116 and SW480 cells. LCLE and LCBE dose- and time-dependently inhibited the proliferation of HCT116 and SW480 cells. However, LCFE did not affect the proliferation of HCT116 and SW480 cells. In addition, LCLE and LCBE dramatically cell migration and wound healing in HCT116 cells. LCLE and LCBE decreased β-catenin protein level but not mRNA level in HCT116 and SW480 cells. Furthermore, LCLE decreased TCF4 level in both protein and mRNA level in HCT116 and SW480 cells. However, LCBE decreased TCF4 protein level but not mRNA level in HCT116 and SW480 cells. Based on these findings, LCLE and LCBE may inhibit the cell proliferation and migration through blocking Wnt signaling activation in human colorectal cancer cells. Therefore, LCLE and LCBE may be a potential candidate for the development of chemopreventive or therapeutic agents for human colorectal cancer.

Anti-CSC Effects in Human Esophageal Squamous Cell Carcinomas and Eca109/9706 Cells Induced by Nanoliposomal Quercetin Alone or Combined with CD 133 Antiserum

  • Zheng, Nai-Gang;Mo, Sai-Jun;Li, Jin-Ping;Wu, Jing-Lan
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.20
    • /
    • pp.8679-8684
    • /
    • 2014
  • CD133 was recently reported to be a cancer stem cell and prognostic marker. Quercetin is considered as a potential chemopreventive agent due to its involvement in suppression of oxidative stress, proliferation and metastasis. In this study, the expression of CD133/CD44 in esophageal carcinomas and Eca109/9706 cells was explored. In immunoflurorescence the locations of $CD133^+$ and multidrug resistance 1 $(MDR1)^+$ in the same E-cancer cells were coincident, mainly in cytomembranes. In esophageal squamous cell carcinomas detected by double/single immunocytochemistry, small $CD133^+$ cells were located in the basal layer of stratified squamous epithelium, determined as CSLC (cancer stem like cells); $CD44^+$ surrounding the cells appeared in diffuse pattern, and the larger $CD44^+$ (hi) cells were mainly located in the prickle cell layer of the epithelium, as progenitor cells. In E-cancer cells exposed to nanoliposomal quercetin (nLQ with cytomembrane permeability), down-regulation of NF-${\kappa}Bp65$, histone deacetylase 1 (HDAC1) and cyclin D1 and up-regulation of caspase-3 were shown by immunoblotting, and attenuated HDAC1 with nuclear translocation and promoted E-cadherin expression were demonstrated by immunocytochemistry. In particular, enhanced E-cadherin expression reflected the reversed epithelial mesenchymal transition (EMT) capacity of nLQ, acting as cancer attenuator/preventive agent. nLQ acting as an HDAC inhibitor induced apoptotic cells detected by TUNEL assay mediated via HDAC-NF-${\kappa}B$ signaling. Apoptotic effects of liposomal quercetin (LQ, with cytomembrane-philia) combined with CD133 antiserum were also detected by CD133 immunocytochemistry combined with TUNEL assay. The combination could induce greater apoptotic effects than nLQ induced alone, suggesting a novel anti-CSC treatment strategy.

Chemopreventive Potential of an Ethyl Acetate Fraction from Curcuma Longa is Associated with Upregulation of p57kip2 and Rad9 in the PC-3M Prostate Cancer Cell Line

  • Rao, K.V.K.;Samikkannu, T.;Dakshayani, K.B.;Zhang, X.;Sathaye, S.S.;Indap, M.A.;Nair, Madhavan P.N.
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.3
    • /
    • pp.1031-1038
    • /
    • 2012
  • Background: Turmeric ($Curcuma$ $longa$) has been shown to possess anti-inflammatory, antioxidant and antitumor properties. However, despite the progress in research with $C.$ $longa$, there is still a big lacuna in the information on the active principles and their molecular targets. More particularly very little is known about the role of cell cycle genes $p57^{kip2}$ and Rad9 during chemoprevention by turmeric and its derivatives especially in prostate cancer cell lines. Methods: Accordingly, in this study, we have examined the antitumor effect of several extracts of $C.$ $longa$ rhizomes by successive fractionation in clonogenic assays using highly metastatic PC-3M prostate cancer cell line. Results: A mixture of isopropyl alcohol: acetone: water: chloroform: and methanol extract of $C.$ $longa$ showed significant bioactivity. Further partition of this extract showed that bioactivity resides in the dichloromethane soluble fraction. Column chromatography of this fraction showed presence of biological activity only in ethyl acetate eluted fraction. HPLC, UV-Vis and Mass spectra studies showed presence three curcuminoids in this fraction besides few unidentified components. Conclusions: From these observations it was concluded that the ethyl acetate fraction showed not only inhibition of colony forming ability of PC-3M cells but also up-regulated cell cycle genes $p57^{kip2}$ and Rad9 and further reduced the migration and invasive ability of prostate cancer cells.