• Title/Summary/Keyword: Chemistry I textbook

Search Result 33, Processing Time 0.023 seconds

An Analysis of the Definition and the Meaning Used for the Terms of Heat and Thermal Energy in the Science Textbooks (과학과 교과서에 나타난 열과 열에너지 용어의 정의 및 사용 의미 분석)

  • Kim, Serim;Park, Jong-Yoon
    • Journal of the Korean Chemical Society
    • /
    • v.62 no.3
    • /
    • pp.214-225
    • /
    • 2018
  • In this study, we tried to find out how heat and thermal energy terms are defined and used in Korean science textbooks, and to see if there are any differences in the meaning of these terms used in different areas of science. For this purpose, the contents of 52 science textbooks of elementary, middle and high school published by the 2009 revised curriculum were analyzed. The definition of the term heat is given in the middle school Science(1) and the high school Physics I and II textbooks. Most textbooks define heat as "energy transferred due to a temperature difference (Type I)". Only one textbook of Physics I defines heat as "transfer of energy due to a temperature difference (Type II)". The definition of thermal energy is mostly presented in the middle school Science (2) and the high school Physics I textbooks. Physics I textbooks define the thermal energy as "molecular kinetic energy (Type III)", while Science(2) textbooks define it as Type I or "energy causes temperature change or phase transition of matter (Type IV)". In the texts of textbooks, heat is mainly used as the meaning of Type I or Type III. Thermal energy is mainly used as Type III, but it is also used as Type I in the high school Physics and Chemistry textbooks. The meanings of heat and thermal energy terms used are differed by the area of science. They are mainly used as type I or type III in Physics and Chemistry textbooks, and used as type III in Life Science and Earth Science textbooks.

Analysis of Explanations and Examples of the Brønsted-Lowry Model Presented in Chemistry Textbooks Developed by 2009 Revised Curriculum (2009 개정교육과정의 화학교과서에 제시된 Brønsted-Lowry 모델에 관한 설명과 예시의 문제점 분석)

  • Choi, Hee;Park, Chul-Yong;Kim, Sungki;Paik, Seoung-Hey
    • Journal of the Korean Chemical Society
    • /
    • v.62 no.4
    • /
    • pp.279-287
    • /
    • 2018
  • In this study, we analyzed the explanations and examples of Brønsted-Lowry model in Chemistry I and Chemistry II textbooks of the 2009 revised curriculum. In particular, the definition of the Brønsted-Lowry model, the examples, and the content of experiments were analyzed by the process perspective of chemical equilibrium, emergent process. The analyzed textbooks were 4 kinds of Chemistry I textbooks and 4 kinds of Chemistry II textbooks in 2009 revision curriculum. As a result, Chemical I textbooks did not adequately show the chemical equilibrium viewpoint when explaining the Brønsted-Lowry model. In the Chemistry II textbooks, the examples of Brønsted-Lowry model were not present emergent process viewpoint, and those were described as sequential viewpoint of Arrhenius model. In addition, examples of experiments to demonstrate the Brønsted-Lowry model of Chemistry II textbooks were insufficient. The experimental examples related to the definition of acid bases were at the level of classification by the color change of indicators. The experimental examples for explaining the strength of acid and base were to compare current intensity or amount of hydrogen gas generated from the reaction with metal. In addition, all textbooks presented the state of aqueous solution when describing the Brønsted-Lowry model, causing problems with differentiation from the Arrhenius model. Therefore, it is necessary to develop examples of experiments to help students understand Brønsted-Lowry model by presenting acid and base reaction in the non-aqueous solution state.

A Comparative Analysis of Cognitive Levels of 11th Grade Students and Cognitive Levels Required by High School Chemistry I Textbooks (고등학교 2학년 학생들의 인지수준과 화학 I 교과서 내용이 요구하는 인지수준 비교 분석)

  • Kim, Eun-Suk;Park, Kwang-Seo;Oh, Chang-Ho;Kim, Dong-Jin;Park, Kuk-Tae
    • Journal of the Korean Chemical Society
    • /
    • v.48 no.6
    • /
    • pp.645-653
    • /
    • 2004
  • The purpose of this study was to compare and analyze the cognitive levels of 11th grade students and those required in high school chemistry I textbooks standardized by the 7th national education curriculum. For this study, the cognitive development stages of 456 11th grade students were surveyed using short-version GALT (group assessment of logical thinking). Furthermore, 15 basic concepts were extracted from the contents on water and air, 2 units in chemistry I order to analyze the cognitive levels necessary for understanding high school textbooks, using CAT (curriculum analysis taxonomy). The results showed that 52.5% of the surveyed 11th grade students reached the formal operational level, 28.3% transitional levels, and 19.5% concrete operational levels. 68.9% of the academic high school students and 6.6% of the technical high school students reached the formal operational levels, and the ratio of formation was very different in each logics. As a result of the analyzing the cognitive levels needed for understanding chemistry I textbook contents, in spite of a change in national education curriculum, there were no great change in cognitive levels required by scientific concept except some inquiry activities. The cognitive levels in high school chemistry I textbooks by the 7th national education curriculum appeared higher than the cognitive levels of 11th grade student, but cognitive levels of inquiry activities were similar to the cognitive levels of the students. Chemistry teachers thought of chemistry I textbooks by the 7th national education curriculum as desirable because scientific concepts were reduced and a lot of real life materials were adapted. However, they pointed out a problem of difference in contents levels compared with chemistry I textbooks because scientific concepts were greatly reduced in chemistry I textbooks. The cognitive levels required in chemistry I textbooks still appeared higher than those of the students. Consequently, various teaching and learning methods and materials will have to be developed to be suitable for the students' cognitive levels.

Analysis of Safety Contents in the High School Science Textbooks Based on the 2015 Revised National Science Curriculum (2015 개정 고등학교 과학 교과 교과서에 제시된 안전 관련 내용 분석)

  • Lee, Seyeon;Lee, Bongwoo
    • Journal of The Korean Association For Science Education
    • /
    • v.39 no.4
    • /
    • pp.563-571
    • /
    • 2019
  • The purpose of this study is to analyze the safety contents presented in high school science textbooks of the 2015 revised national science curriculum. For these, we found safety contents in the inquiries and appendices of 63 science textbooks: integrated science, science inquiry experiment, physics I, II, chemistry I, II, biology I, II, and earth science I, II. We analyzed these safety contents using six safety factors based on the seven standards for safety education. The main results are as follows: First, 81(46.0%) inquiries among 176 curriculum inquiries contain safety contents, and these contents are mainly found in chemistry textbooks, and the least in 'science inquiry experiment' textbooks. Second, safety contents are found the most in 'laboratory safety rule', followed by 'safety symbol' and 'usage of protection equipment'. Third, the safety contents of appendices are mainly in 'laboratory safety rule' and 'accident treatment'. Based on these results of this study, it is concluded that these textbooks have problems; that there is a big difference in describing safety contents in each textbook; that these safety contents are not presented in detail and that the educational effect is reduced. Furthermore, the safety symbol is not standardized. We also discussed ways to improve the safety contents of science textbooks.

An Analysis of Inquiry Area in the Chemistry (I) Textbooks by the Inquiry Elements Based on the 7th Science Curriculum (제7차 과학교육과정의 탐구 요소들에 의한 화학 (I) 교과서의 탐구 영역 분석)

  • Kang, Dae-Ho;Jeong, Soo-Goon;Kim, Bong-Gon
    • Journal of the Korean Chemical Society
    • /
    • v.47 no.6
    • /
    • pp.633-644
    • /
    • 2003
  • The purpose of this study was to analyze the inquiry elements and inquiry activity of the inquiry area in chemistry I textbooks authorized by 7th curriculum. It was to confirm suitable reflection of the 7th science curriculum and to find educational suggestions of inquiry learning. It was found that the basic inquiry elements except measuring and classifying were well reflected on the textbooks. However, only several integrated inquiry elements and the inquiry activities were well reflected on the same textbooks. For the integrated inquiry elements, interpreting data was shown as the tower above the rest inquiry elements. In the analysis of inquiry activity, the numbers of experiment is placed almost half of all inquiry activities. The sum of two numbers of investigation and discussion is similar ratio to experiment but field trip and project are rarely or low ratio. As the integrated inquiry elements and inquiry activities were not balanced for various inquiry learning. It is suggested that learners be educated with complementary of these aspects in inquiry learning.

Analysis of Scientific Item Networks from Science and Biology Textbooks (고등학교 과학 및 생물교과서 과학용어 네트워크 분석)

  • Park, Byeol-Na;Lee, Yoon-Kyeong;Ku, Ja-Eul;Hong, Young-Soo;Kim, Hak-Yong
    • The Journal of the Korea Contents Association
    • /
    • v.10 no.5
    • /
    • pp.427-435
    • /
    • 2010
  • We extracted core terms by constructing scientific item networks from textbooks, analyzing their structures, and investigating the connected information and their relationships. For this research, we chose three high-school textbooks from different publishers for each three subjects, i.e, Science, Biology I and Biology II, to construct networks by linking scientific items in each sentence, where used items were regarded as nodes. Scientific item networks from all textbooks showed scare-free character. When core networks were established by applying k-core algorithm which is one of generally used methods for removing lesser weighted nodes and links from complex network, they showed the modular structure. Science textbooks formed four main modules of physics, chemistry, biology and earth science, while Biology I and Biology II textbooks revealed core networks composed of more detailed specific items in each field. These findings demonstrate the structural characteristics of networks in textbooks, and suggest core scientific items helpful for students' understanding of concept in Science and Biology.

Diagnosis of Students' Cognition and Understanding about Heavy Metals According to the Different Major between Liberal Art and Science in High School (문.이과 계열에 따른 중금속에 대한 고등 학생들의 인식 및 이해도 분석)

  • Moon, Kyung-Ah;Chae, Hee-K.
    • Journal of the Korean Chemical Society
    • /
    • v.53 no.6
    • /
    • pp.793-804
    • /
    • 2009
  • In this study, high school students' perceptions of chemically ill-defined ‘heavy metals’ were examined through questionnaires. Nineteen classes of 11th graders (N = 611) were divided into two groups according to completion of 'Chemistry I', which were 10 science-classes and 9 liberal art-classes and compared each other. Three terms of students' cognition and definition, impact on the formation of their cognition, and their chemical knowledge of 'heavy metals' were analyzed by SPSS. The findings revealed that most of students recognized ‘the heavy metal’ as the metal which causes to be accumulated on any living thing and is hazardous in human body regardless of different major between liberal art and science. Mass media and school instruction were found to be the greatest impact on the formation of these cognitions. Especially, school instruction had more effects on students majoring in science than students majoring in liberal art, which bring the result that students in science-classes have more misconception about the definition of 'heavy metals' with human toxicant regardless of metal species and its content in human body and physical density due to the ill-defined terminology of the textbook than students in liberal art-classes do. It is interesting that students in science-classes understood hazard and chemical structure of 'heavy metals' better, while students in liberal art-classes answered the question better about hazardous properties of heavy metals.

Teaching Strategy Development of Secondary School Chemistry Based on the Cognitive Levels of Students and the Cognitive Demands of Learning Contents (학습자의 인지수준과 학습내용의 인지요구도를 고려한 중등화학 학습전략 개발에 대한 연구)

  • Kang, Soon Hee;Park, Jong Yoon;Jeong, Jee Young
    • Journal of the Korean Chemical Society
    • /
    • v.43 no.5
    • /
    • pp.578-588
    • /
    • 1999
  • The purpose of this study is to develope the more effective chemistry teaching strategy through analyzing the demanded cognitive levels of contents in high school chemistry I textbooks and the cognitive levels of students who learn these textbooks. For this purpose, the levets of cognitive development stages of 821 second grade students of high schools in Seoul City were anaIyzed using the GALT short version test. The demanded cognitive levels of understanding the contents of chemistry I textbooks in high school were analyzed using the curriculum analysis taxonomy developed by CSMS (Concept in Secondaly Mathematics and Science) program of the Great Britain. The resuIts showed that the proportion of students in the concrete operational stage, the transition stage, and the formal operational stage was l0.7%, 43.0% and 46.3%, respectively. The demanded levels of textbook contents were mostly the early formal operational stages. The concepts demanded the level of the late formal operational stage were 'atomic and molecular weight', 'stoichiometry of chemical reaction', and 'periodic properties of elements'. The results will be helpful for teachers in knowing what concepts are difficult for students to understand and in planning strategies for teaching those concepts. To demonstrate the application of the results obtained in this study, an example of developing teaching strategy which includes the adjustment of cognitive level of contents was shown.

  • PDF

A Study of High School Students' Conceptions of Mixing Phenomena Related to Dissolution and Diffusion (용해.확산과 관련된 혼합현상에 대한 고등학생들의 개념 유형 분석)

  • Hur, Mi-Youn;Jeon, Hey-Sook;Paik, Seoung-Hey
    • Journal of the Korean Chemical Society
    • /
    • v.52 no.1
    • /
    • pp.73-83
    • /
    • 2008
  • The purpose of this study was to investigate the types of conceptions of mixing phenomena related to dissolution and diffusion in high school students. The subjects of the investigation consisted of 108 students who took chemistry I course at 11th grade and 29 students who took chemistry II course at 12th grade. For this study, it was found that the many students had the alternative conception that chalk didn't dissolve in water because chalk was a nonpolar material. Most of the students understood the phenomena which carbon tetrachloride and water will not mix as the attraction conception. But many of the other students understood the phenomenon as characteristic of the materials such as difference of density. Many of the students understood the phenomenon of mixing ethanol and water constantly as ‘Attraction conception'. The phenomenon which is mixed ink and water was just accepted by the most students as the spreading of ink in water without understanding the reason of mixing. The phenomena of mixing iodine and carbon tetrachloride was understood as ‘Space conception' or ‘Attraction conception'. It could be inferred that the diverse alternative conceptions related to dissolution and diffusion phenomena were generated by the absence of entropy concept. Therefore, the explanations of science textbooks related to dissolution and diffusion phenomena need to change for students to understand them correctly.

Exploring the Possibility of Applying Social and Emotional Learning to Science Subjects: Analysis of Social Emotional Learning Contents in Science Textbooks (과학교과의 사회정서학습(Social and Emotional Learning) 적용 가능성 탐색: 과학 교과서의 과학과 사회정서학습 요소 분석)

  • Park, HyunJu
    • Journal of Science Education
    • /
    • v.41 no.3
    • /
    • pp.297-317
    • /
    • 2017
  • The purpose of this study was to investigate the possibility of Science Social and Emotional Learning(SSEL). The factors of SSEL were suggested, and by utilizing them, the contents of middle school's science and Chemistry 1 textbook were analyzed. The factors are as follow: numeracy, information and communication technology, critical thinking, creative thinking, personal and social capability, ethical understanding, and intercultural understanding. The results showed that the 60~70% of textbooks put emphasis on numeracy, information and communication technology, critical thinking, creative thinking while some factors were limited in th contents, which were personal and social capability, ethical understanding, and intercultural understanding. Therefore, teacher should try to reconstruct the teaching and learning materials and fill in the deficiencies of SSEL factors through class activities. In addition, it is suggested to study specific application methods such as science activities or experiment activities in detail to meet social and emotional learning.