• Title/Summary/Keyword: Chemical waste disposal

Search Result 178, Processing Time 0.033 seconds

A Status on the Chemical Waste in Elementary School Science Laboratory (초등학교 과학실에서 발생하는 화학폐기물에 대한 실태)

  • Kim, Seong Gyu;Heo, Seung Hyeon
    • Journal of Environmental Science International
    • /
    • v.13 no.3
    • /
    • pp.301-311
    • /
    • 2004
  • The purpose of this study was to examine teachers’ awareness of chemical waste produced in elementary school laboratory experimentation and how this awareness relates to collection and disposal of chemical waste. More specifically, the study looked at the correlation between the handling of chemical waste and factors such as years of teachers’ educational career, class size and amount of waste produced. The target population were 250 elementary school teachers in Gyeongnam area and 237 subjects were responded. Among the 237 responses, 37 cases that did not complete the questionnaire were eliminated. Therefore, 200 responses were analyzed in this study. The survey questionnaire consisted of 15 questions. The categories of the questionnaire were their skills of management and treatment of the chemical waste. The data collected were analyzed by SPSS 10.0, and the relations among variables such as class sizes and years of teaching experience were also analyzed by $x^2-test.$ The results in this study were as follows: First, there were no significant differences between the years of teaching and class sizes in the training experience of chemical waste disposal. Second, there was a significant difference between the science laboratory size and class sizes in the laboratory actual condition. In addition, in the relations between the number of times of experimentation and the years of teaching experience, there was a significant difference. Third, in terms of the discharge amount of chemical waste, there was a significant difference between the years of teaching and class sizes. Fourth, in the simple chemistry waste disposal process in the science laboratory, there also was a significant difference between the kinds of experimental equipments that used in the experimentation and the years of teaching. Based on this study, it was found that great amount of the chemical wastes produced in the science laboratory dumped into the drain and the treatment process of chemical waste was also inattentive. Even the importance of environmental education is emphasized in the elementary education, the basic problems occurred in the science laboratory is disregarded. Therefore, not only students but teachers have to pay attention to the disposal process of chemical waste in the laboratory in order to prevent environment pollution. Furthermore, the efforts of preventing environment pollution are needed such as opening the teacher training course about environment education, minimal use of chemicals, treatment of chemical waste, and so forth.

Review on TNT Disposal (TNT 처리에 관한 연구동향)

  • Park, Jae Hyun;Shin, Won Mo;Lee, Jae W.
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.19 no.1
    • /
    • pp.127-143
    • /
    • 2016
  • Over the decades, TNT has been produced indiscriminately to be utilized in many fields owing to its ability to manipulate the explosion. Yet, the proper technique for disposal of TNT and the waste residues had not been developed so that the large amount of TNT waste was being piled up. Upon the agreement to demilitarization of old weapon, a study on the disposal methods for TNT and the waste treatment have been raised for their dangerous nature. Since then, from burying in landfill to utilizing supercritical fluid-based oxidation, a lot of research is actively ongoing, but little progress has been made in Korea compared to developed countries. This review paper covers all the technologies developed for TNT and its waste disposal including the concept, advantage, and disadvantage of those technologies. Also, suggested here are the future research directions.

Measuring thermal conductivity and water suction for variably saturated bentonite

  • Yoon, Seok;Kim, Geon-Young
    • Nuclear Engineering and Technology
    • /
    • v.53 no.3
    • /
    • pp.1041-1048
    • /
    • 2021
  • An engineered barrier system (EBS) for the disposal of high-level radioactive waste (HLW) is composed of a disposal canister with spent fuel, a buffer material, a gap-filling material, and a backfill material. As the buffer is located in the empty space between the disposal canisters and the surrounding rock mass, it prevents the inflow of groundwater and retards the spill of radionuclides from the disposal canister. Due to the fact that the buffer gradually becomes saturated over a long time period, it is especially important to investigate its thermal-hydro-mechanical-chemical (THMC) properties considering variations of saturated condition. Therefore, this paper suggests a new method of measuring thermal conductivity and water suction for single compacted bentonite at various levels of saturation. This paper also highlights a convenient method of saturating compacted bentonite. The proposed method was verified with a previous method by comparing thermal conductivity and water suction with respect to water content. The relative error between the thermal conductivity and water suction values obtained through the proposed method and the previous method was determined as within 5% for compacted bentonite with a given water content.

Systematic investigation of heavy metals from MSWI fly ash and bottom ash samples

  • Ramakrishna., CH;Thriveni., T;Ahn, Ji Whan
    • Journal of Energy Engineering
    • /
    • v.26 no.4
    • /
    • pp.35-44
    • /
    • 2017
  • Disposal of municipal solid waste has become a major problem in many countries around the world. As landfill space for the disposal of ash from Municipal Solid Waste Incineration (MSWI) becomes scarce, numerous reports and researches address the various environmental issues about the municipal solid waste incineration waste management and other particulate matters with the range of 10 ~ 2.5. Although in many developing and industrialization countries landfill with the disposal of municipal solid waste, open incineration has become a common practice. Large municipal waste incinerators are major industrial facilities and have the potential to be significant sources of environmental pollution. Despite the significant volume reduction from incineration, waste recycling is important to ensuring the future welfare of mankind. The main goal of the present work is the physical and chemical characterization of the local incineration bottom ash towards its eventual re-utilization. In this paper, we reported the studies on physical and chemical characteristics of municipal solid waste incineration (MSWI) fly ash and bottom ash containing particulate matter whose particulate sizes are lower than $PM_{10}$, $PM_{2.5}$ and heavy metal were investigated.

Chinese buffer material for high-level radiawaste disposal --Basic features of GMZ-l

  • WEN Zhijian
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2005.11b
    • /
    • pp.236-244
    • /
    • 2005
  • Radioactive wastes arising from a wide range of human activities are in many different physical and chemical forms, contaminated with varying radioactivity. Their common feature is the potential hazard associated with their radioactivity and the need to manage them in such a way as to protect the human environment. The geological disposal is regarded as the most reasonable and effective way to safely disposal high-level radioactive wastes in the world. The conceptual model of geological disposal in China is based on a multi-barrier system that combines an isolating geological environment with an engineered barrier system. The buffer is one of the main engineered barriers for HLW repository. The buffer material is expected to maintain its low water permeability, self-sealing property, radio nuclides adsorption and retardation property, thermal conductivity, chemical buffering property, overpack supporting property, stress buffering property over a long period of time. Benotite is selected as the main content of buffer material that can satisfy above. GMZ deposit is selected as the candidate supplier for Chinese buffer material of High Level Radioactive waste repository. This paper presents geological features of GMZ deposit and basic property of GMZ Na bentonite. GMZ bentonite deposit is a super large scale deposits with high content of Montmorillonite (about $75\%$) and GMZ-l, which is Na-bentonite produced from GMZ deposit is selected as reference material for Chinese buffer material study.

  • PDF

Application of a Novel Carbon Regeneration Process for Disposal of APEG Treatment Waste

  • 류건상;Shubender Kapila
    • Bulletin of the Korean Chemical Society
    • /
    • v.18 no.8
    • /
    • pp.814-818
    • /
    • 1997
  • The chemical waste treatment, APEG (alkali/polyethylene glycol) process has been shown to be effective for the dechlorination of PCBs in transformer oil. Considerable amount of PCBs, however, still remains in the waste exceeding the 25-50 ppm limit set by regulatory agency. A new thermal regeneration technology has been developed in our laboratory for disposal of hazardous organic wastes. Due to the limited oxidation of carbon surface through the reverse movement of flame front to oxidant flow, this technology was termed counterflow oxidative system (COS). Specially, the oxidant flow in the COS process is a principal parameter which determines the optimum conditions regarding acceptable removal and destruction efficiency of adsorbed organic wastes at minimal carbon loss. The COS process, under optimum conditions, was found to be very effective and the removal and destruction efficiency of 99.99% or better was obtained for residual PCBs in the waste while bulk (≥90%) of carbon was recovered. Any toxic formation of polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated dibenzo furans (PCDFs) were not detected in the regenerated carbon and impinger traps. The results of surface area measurement showed that the adsorptive property of regenerated carbon is mostly reclaimed during the COS process.

Plan to Develop the Radioactive Waste Certification Program (방사성폐기물인증프로그램 개발 방안)

  • Chung Hee-Jun;Lee Jae-Min;Whang Joo-Ho;Kim Heon;Jeong Yi-Yeong
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2005.06a
    • /
    • pp.205-210
    • /
    • 2005
  • The proposed regulation for low and intermediate level radioactive waste disposal facility, scheduled to be revised, recommends that the waste generator should verify the radioactive waste conforms to the disposal requirements before disposing of it. According to the regulation, the radionuclide concentration of the radioactive waste, and its physical and chemical characteristics and safety must be confirmed prior to the disposal of low and intermediate level radioactive wastes, and the waste generator is required to deliver this information to the disposal facility operator. In addition, the disposal facility operator must assess the safety of the disposal site to establish the SWAC (Site Specific Waste Acceptance Criteria) in consideration of the characteristics of the site, whereas the waste generator must comply with the criteria in managing, disposing of and delivering low and intermediate level radioactive wastes. To abide by the afore-mentioned regulation and criteria, the waste generator must verify that the radioactive wastes to be disposed of are suitable for disposal before they are transported to the disposal facility, and to this end a radioactive waste certification program must be developed. This study conducted an in-depth analysis of the radioactive waste certification programs enforced in countries advanced in atomic energy to develop a draft of a certification program applicable to local power plants, and the program is currently applied as pilot to Uljin Power Plants No. 1 & 2 to prove its applicability. This study is going to analyze the results of the pilot application with a view to developing a radioactive waste certification program suitable to local conditions.

  • PDF

The Effect of Food Waste Compost on Tomato (Lycoperscion Esculentum.L) Growth and Soil Chemical Properties (음식물류 폐기물 퇴비 시용이 토마토 생육 및 토양특성에 미치는 영향)

  • Lee, Young Don;Huseein, Khalid Abdallah;Yoo, Jae Hong;Joo, Jin Ho
    • Korean Journal of Environmental Agriculture
    • /
    • v.38 no.4
    • /
    • pp.332-337
    • /
    • 2019
  • BACKGROUND: From year 2005, landfill for food waste has been prohibited. Also, according to London agreement in year 2013, ocean discharge for livestock manure, sewage sludge, and food waste has been regulated. Alternative way for food waste disposal is incineration. However, due to high moisture content, additional input for energy is needed. Therefore, effective way for food waste disposal such as application of food waste compost is needed. METHODS AND RESULTS: Seven different treatments (livestock compost, food waste compost, food waste + livestock compost, livestock compost + chemical fertilizer, food waste compost + chemical fertilizer, food waste + livestock compost + chemical fertilizer and control) were applied to tomato crop. All treatments were replicated with completely randomized design. Tomato growth treated with LC+NPK showed the highest values at 6 weeks for all parameters such as leaf length (11.80 cm), leaf width (6.88 cm), and chlorophyll (61.12 O.D.), compared to other treatments. Subsequently the FWC+LC+NPK treatment was followed (11.51 cm, 6.40 cm, 59.50 O.D. for leaf length, leaf width, and chlorophyll, respectably). EC, OM contents, and CEC in the soil treated with the composts significantly increased. CONCLUSION: To evaluate the effect of food waste compost application on tomato growth and soil chemical properties, we carried out field experiment treated with 7 treatments with 3 replicates. The LC+NPK treatment showed highest values for all parameters. Some parameters such as shoot length and total length for tomato were not significantly different between the LC+NPK and the FWC+LC+NPK treatments.

Low and Intermediate Level Radioactive Waste Certification Program Plan (중.저준위 방사성폐기물 인증 프로그램 계획)

  • Ahn Sum-Jin;Kim Tae-Kook;Lee Young-Hee;Kang Ill-Sik;Shon Jong-Sik;Hong Kwon-Pyo
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.4 no.2
    • /
    • pp.187-195
    • /
    • 2006
  • The regulation for the low and intermediate level radioactive waste to be transferred to the disposal facility, recently revised, require that radioactive waste generators should set up waste certification program to verify the radioactive waste conform to the waste acceptance criteria(WAC) before disposal. The radioactive waste disposal facility, scheduled to be constructed in Korea, will institute WAC for the wastes to be transferred to the facility. This WAC is expected to compose of the requirements for the radiological characterization, physical and chemical characterization, physical/chemical restriction, prohibited item, packaging, identification, labeling, and documentation. For the compliance with this regulation, The radioactive waste generators should verify that the waste meet WAC through performance of the waste certification program and are responsible for handing in all the certification documents to the disposal facility. This waste certification program plan was set up as a preliminary program for the certification of radioactive waste generated in Korea Atomic Energy Research Institute (KAERI) and should be further revised until preparation of WAC by disposal agent.

  • PDF

Risk Assessment Framework for Safe Disposal and Reuse of Solidified/Stabilized Wastes (고형화 폐기물의 안정적 처분과 재활용을 위한 환경위해성 평가 체계의 연구)

  • Park, Joo-Yang
    • Journal of the Korean GEO-environmental Society
    • /
    • v.2 no.1
    • /
    • pp.15-22
    • /
    • 2001
  • The key part in risk assessments for disposal sites of solidified/stabilized (S/S) wastes is to predict the contaminant transport from the S/S wastes to the environment under dynamically changing field conditions after characterizing chemical leaching properties of the ash, to evaluate the risk from the predictions, and finally to decide the risk is acceptable. In this paper, a risk assessment framework for disposal and reuse of S/S wastes was developed considering two limiting cases of contaminant leaching. Two types of waste characterization procedures that can determine waste-specific variables for the two limiting cases were developed and verified by applying them to a landfill site of the Municipal Solid Waste incinerator ash solidified/stabilized by cement.

  • PDF