• Title/Summary/Keyword: Chemical structure analysis

Search Result 1,786, Processing Time 0.042 seconds

A Study on Waterproofing and Anticorrosive Performance Evaluation of Polyurea Resin Waterproofing Membrane Coating of Velocity per Second Hardening (초속경화(初速硬化) 폴리우레아수지 도막방수재(途膜防水材)의 방수(防水)·방식(防蝕) 성능평가(性能評價)에 관한 연구(硏究))

  • Cho, Chan-Haeng;Kang, Hyo-Jin;Oh, Sang-Keun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2003.11a
    • /
    • pp.91-95
    • /
    • 2003
  • There is a problem to be solved for improvement of durability and safety supervision. When you do the waterproofing and anticorrosive work of main concrete from the design stage, the material and method of construction need to be correctly applied to appropriate circumstance conditions. Epoxy have mostly been used for concrete water tank structure. Lately, lots of subjects on adaption of polyurea resin waterproofing and anticorrosive are under discussion. Then, we attempt to approach by evaluating and comparing every capabilities with another waterproofs in this study. Performance evaluation items include the adherence performance, the imprint of seal performance, temperature dependence performance, promotion weatherizing ability, inner chemical performance, drinking water eruptive performance. Through the experiment analysis, we found that the polyurea resin waterproofing membrane is dominantly superior to other waterproofs. According to this study, we suggest the polyurea resin waterproofing membrane as a new waterproofing material for concrete structure.

  • PDF

Physical Properties of Recycled Polyester Yarns According to Recycling Methods (재생 방법에 따른 재생 폴리에스터사의 물성 변화)

  • Lee, Sun-Young;Won, Jong-Sung;Yoo, Jae-Jung;Hahm, Wan-Gyu;Lee, Seung-Goo
    • Textile Coloration and Finishing
    • /
    • v.24 no.1
    • /
    • pp.91-96
    • /
    • 2012
  • The physical properties of recycled polyester yarns according to recycling methods were investigated. Virgin polyester draw texturized yarn(DTY), material-recycled(MR) polyester DTY and chemical-recycled(CR) polyester DTY were prepared. Surface morphology, thermal property, micro-structure and mechanical property of recycled polyester yarns were estimated. SEM-EDS analysis showed that the CR PET yarn had better crimp and more stable structure than MR PET yarn. Tm of the MR PET yarn was higher than that of the CR PET yarn. The intensity of the crystallization peak of the CR PET yarn was a little higher than that of the MR PET yarn. Tensile strength of the MR PET yarn was slightly higher than that of the CR PET yarn. Breaking elongation of the CR PET yarn was slightly higher than that of the MR PET yarn.

A Study on Waterproofing Performance Evaluation of Polyurea Resin Waterproofing Membrane Coating of Velocity per Second Hardening (뿜칠형 초속경화 폴리우레아수지 도막방수재의 성능평가에 관한 연구)

  • Oh, Sang-Keun;Kim, Su-Ryun;Lee, Sung-Il
    • Journal of the Korea Institute of Building Construction
    • /
    • v.2 no.1
    • /
    • pp.131-138
    • /
    • 2002
  • There is a problem to be solved for improvement of durability and safety supervision. When you do the waterproofing work of main concrete from the design stage, the material and method of construction need to be correctly applied to appropriate circumstance conditions. Epoxy have mostly been used for concrete water tank structure. Lately, lots of subjects on adaption of polyurea resin waterproofing and anticorrosive are under discussion. Then, we attempt to approach by evaluating and comparing every capabilities with another waterproofs in this study. Performance evaluation items include the adherence performance, the imprint of seal performance, temperature dependence performance, promotion weatherizing ability, Inner chemical performance. drinking water eruptive performance. Through the experiment analysis, we found that the polyurea resin waterproofing membrane is dominantly superior to other waterproofs. According to this study, we suggest the polyurea resin waterproofing membrane as a new waterproofing material for concrete structure.

A Study on Waterproofing and Anticorrosive Performance Evaluation of Polyurea Resin Waterproofing Membrane Coating of Velocity per Second Hardening (초속경화 폴리우레아수지 도막방수재의 방수.방식 성능평가에 관한 연구)

  • 조찬행;강효진;오상근
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2003.05a
    • /
    • pp.91-95
    • /
    • 2003
  • There is a problem to be solved for improvement of durability and safety supervision. When you do the waterproofing and anticorrosive work of main concrete from the design stage, the material and method of construction need to be correctly applied to appropriate circumstance conditions. Epoxy have mostly been used for concrete water tank structure. Lately, lots of subjects on adaption of polyurea resin waterproofing and anticorrosive are under discussion. Then, we attempt to approach by evaluating and comparing every capabilities with another waterproofs in this study. Performance evaluation items include the adherence performance. the imprint of seal performance, temperature dependence performance. promotion westernizing ability, inner chemical performance. drinking water eruptive performance. Through the experiment analysis, we found that the polyurea resin waterproofing membrane is dominantly superior to other waterproofs. According to this study, we suggest the polyurea resin waterproofing membrane as a new waterproofing material for concrete structure.

  • PDF

Field Emission Characteristics and Growth Analysis of Carbon Nanotubes by Plasma-enhanced Chemical Vapor Deposition (플라즈마 화학 기상 증착법을 이용한 탄소나노튜브의 성장 분석 및 전계방출 특성)

  • 오정근;주병권;김남수
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.16 no.12S
    • /
    • pp.1248-1254
    • /
    • 2003
  • Carbon nanotubes(CNTs) are grown by using Co catalyst metal. CNTs fabricated by PECVD(plasma enhanced chemical vapor deposition) method are studied in terms of surface reaction and surface structure by TEM and Raman analysing method and ate analysed in its electrical field emission characteristics with variation of space between anode and cathode. Acetylene(C$_2$H$_2$) gas is used as the carbon source, while ammonia and hydrogen gas are used as catalyst and dilution gas. The CNTs grown by hydrogen(H$_2$) gas plasma indicates better vortical alignment, lower temperature process, and longer tip, compared to that grown by ammonia(NH$_3$) gas plasma. The CNTs fabricated with Co(cobalt) catalyst metal and PECVD method show the multiwall structure in mid-circle type in tip-end and the inner vacancy of 10nm. Emission properties of CNTs indicate the turn-on field to be 2.6 V/${\mu}{\textrm}{m}$ We suggest that CNTs can be possibly applied to the emitter tip of FEDs and high brightness flat lamp because of low temperature CNTs growth, low turn-on field.

Extended Bifurcated Hydrogen Bonds Network Material of Copper(II) Complexes with 2-Dimethylaminomethyl-3-hydroxypyridine: Structures and Magnetic Properties

  • Kang, Sung-Kwon;Lee, Hong-Woo;Sengottuvelan, Nallathambi;Kim, Young-Inn
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.1
    • /
    • pp.95-99
    • /
    • 2012
  • Two novel copper(II) complexes, [Cu(dmamhp)$(H_2O)_2(SO_4)]_n$ (1) and [Cu(dmamhp)$(NO_3)_2(H_2O)]{\cdot}H_2O$ (2) [dmamhp = 2-dimethylaminomethyl-3-hydroxypyridine] have been synthesized and structurally characterized by single crystal X-ray diffraction analysis. Compound 1 displays a double one-dimensional chains structure, in which each chain is constituted with the distorted octahedral copper(II) complex bridged through bidentate sulfate ligands resulting in a coordination polymer. The bifurcated hydrogen bonds and $\pi-\pi$ interactions play important roles in the formation of the double chains structure. On the other hand, compound 2 adopts a distorted square pyramidal geometry around copper(II) ion and exists as a discrete monomer. There are intermolecular bifurcated hydrogen bonds and $\pi-\pi$ stacking interactions between the monomeric units. The magnetic properties revealed that the paramagnetic behaviors are dominantly manifested and there are no intermolecular magnetic interactions in both compound 1 and 2.

Preparation of Micro-/Macroporous Carbons and Their Gas Sorption Properties

  • Hwang, Yong-Kyung;Shin, Hye-Seon;Hong, Jin-Yeon;Huh, Seong
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.2
    • /
    • pp.377-382
    • /
    • 2014
  • Micro-/macroporous carbons (MMCs) were prepared using a hollow mesoporous silica capsule (HMSC) as a sacrificial hard template. The carbonization process after the infiltration of furfuryl alcohol into the template-free HMSC material afforded MMC materials in high yield. The hard template HMSC could be removed by HF etching without deteriorating the structure of MMC. The MMC materials were fully characterized by SEM, TEM, PXRD, XPS, and Raman spectroscopy. The replication processes were so successful that MMCs exhibited a hollow capsular structure with multimodal microporosity. Detailed textural properties of MMC materials were investigated by volumetric $N_2$ adsorption-desorption analysis at 77 K. To explore the gas sorption abilities of MMCs for other gases, $H_2$ and $CO_2$ sorption analyses were also performed at various temperatures. The multimodal MMC materials were found to be good sorbents for both $H_2$ and $CO_2$ at low pressure.

CO-Tolerant PtMo/C Fuel Cell Catalyst for H2 Oxidation

  • Bang, Jin-Ho;Kim, Ha-Suck
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.10
    • /
    • pp.3660-3665
    • /
    • 2011
  • CO-tolerant PtMo/C alloy electrocatalyst was prepared by a colloidal method, and its electrocatalytic activity toward CO oxidation was investigated. Electrochemical study revealed that the alloy catalyst significantly enhanced catalytic activity toward the electro-oxidation of CO compared to Pt/C counterpart. Cyclic voltammetry suggested that Mo plays an important role in promoting CO electro-oxidation by facilitating the formation of active oxygen species. The effect of Mo on the electronic structure of Pt was investigated using X-ray absorption spectroscopy to elucidate the synergetic effect of alloying. Our in-depth spectroscopic analysis revealed that CO is less strongly adsorbed on PtMo/C catalyst than on Pt/C catalyst due to the modulation of the electronic structure of Pt d-band. Our investigation shows that the enhanced CO electrooxidation in PtMo alloy electrocatalyst is originated from two factors; one comes from the facile formation of active oxygen species, and the other from the weak interaction between Pt and CO.

Synthesis, Structure, and Magnetic Properties of 1D Nickel Coordination Polymer Ni(en)(ox)·2H2O (en = ethylenediamine; ox = oxalate)

  • Chun, Ji-Eun;Lee, Yu-Mi;Pyo, Seung-Moon;Im, Chan;Kim, Seung-Joo;Yun, Ho-Seop;Do, Jung-Hwan
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.7
    • /
    • pp.1603-1606
    • /
    • 2009
  • A new 1D oxalato bridged compound Ni(en)(ox)-2$H_2$O, (ox = oxalate; en = ethylenediamine) has been hydrothermally synthesized and characterized by single crystal X-ray diffraction, IR spectrum, TG analysis, and magnetic measurements. In the structure the Ni atoms are coordinated with four oxygen atoms in two oxalate ions and two nitrogen atoms in one ethylenediamine molecule. The oxalate anion acts as a bis-bidentate ligand bridging Ni atoms in cis-configuration. This completes the infinite zigzag neutral chain, [Ni(en)(ox)]. The interchain space is filled by water molecules that link the chains through a network of hydrogen bonds. Thermal variance of the magnetic susceptibility shows a broad maximum around 50 K characteristic of one-dimensional antiferromagnetic coupling. The theoretical fit of the data for T > 20 K led to the nearest neighbor spin interaction J = -43 K and g = 2.25. The rapid decrease in susceptibility below 20 K indicate this compound to be a likely Haldane gap candidate material with S = 1.

Biocompatibility of Nanoscale Hydroxyapatite-embedded Chitosan Films

  • Sun, Fangfang;Koh, Kwangnak;Ryu, Su-Chak;Han, Dong-Wook;Lee, Jaebeom
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.12
    • /
    • pp.3950-3956
    • /
    • 2012
  • In order to improve the bioactivity and mechanical properties of hydroxyapatite (HAp), chitosan (Chi) was in situ combined into HAp to fabricate a composite scaffold by a sublimation-assisted compression method. A highly porous film with sufficient mechanical strength was prepared and the bioactivity was investigated by examining the apatite formed on the scaffolds incubated in simulated body fluid. In addition, the cytotoxicity of the HAp/Chi composite was studied by evaluating the viability of murine fibroblasts (L-929 cells) exposed to diluted extracts of the composite films. The apatite layer was assessed using scanning electronic microscopy, inductively coupled plasma-optical emission spectrometry and weight measurement. Composite analysis showed that a layer of micro-sized, needle-like crystals was formed on the surface of the composite film. Additionally, the WST-8 assay after L-929 cells were exposed to diluted extracts of the composite indicated that the HAp/Chi scaffold has good in vitro cytocompatibility. The results indicated that HAp/Chi composites with porous structure are promising scaffolding materials for bone-patch engineering because their porous morphology can provide an environment conductive to attachment and growth of osteoblasts and osteogenic cells.