• Title/Summary/Keyword: Chemical state

Search Result 3,657, Processing Time 0.032 seconds

Luminescent properties of magnesium thiogallate phosphor with green emission for LEDs

  • Kim, Kyung-Nam;Kim, Jae-Myung;Choi, Kyoung-Jae;Park, Joung-Kyu;Kim, Chang-Hae
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07b
    • /
    • pp.1331-1333
    • /
    • 2005
  • A magnesium thiogallate phosphor doped with europium was prepared by solid-state method. This phosphor has green emission near 535 nm due to the allowed transition from $4f^65d$ at an excitation state $(T_{2g})$ to $4f^7 (^8S_{7/2}) at a ground state of $Eu^{2+}$ ion. This phosphor shows a wide excitation spectrum from ultra violet (300 nm) to bluish green (515 nm).

  • PDF

NMR Study of Poly(γ-Glutamic Acid)Hydrogels Prepared by γ-Irradiation : Characterization of Bond Formation and Scission

  • 한옥희;최혁준
    • Bulletin of the Korean Chemical Society
    • /
    • v.20 no.8
    • /
    • pp.921-924
    • /
    • 1999
  • Hydrogels were prepared from poly( Υ-glutamic acid) (PGA) solution by g-irradiation of 90 kGy and 170 kGy. The hydrogels were more cross-linked with a higher dosage g-irradiation and completely hydrolyzed at 85℃ within 4 hours resulting in homogeneous solution. NMR techniques were employed to clarify chemical bond formation and scission involved during γ-irradiation and hydrolysis. Characterization of these samples was carried out by taking both liquid state and solid state NMR spectra of PGA and hydrolyzed hydrogels and comparison of these spectra with the solid state NMR spectra of hydrogels. Our results indicate that complicated chemical bond formation and scission have occurred during hydrolysis and γ-irradiation. The samples prepared with higher dosage of γ-irradiation showed more diverse chemical bond formation and scission.

Intramolecular Proton Transfers of 2-hydroxy-4,5-naphthotropone

  • Du-Jeon Jang
    • Bulletin of the Korean Chemical Society
    • /
    • v.12 no.4
    • /
    • pp.441-444
    • /
    • 1991
  • The intramolecular proton transfers of 2-hydroxy-4,5-naphthotropone in room temperature solutions are studied using static and time-resolved absorption and emission spectroscopy. Dual normal and tautomer fluorescence is observed in ethanol solution, while only the tautomer fluorescence is observed in cyclohexane solution. The fluorescence lifetimes and quantum yields in ethanol and cyclohexane solutions indicate that in hydrocarbon solvents, rapid intersystem crossing competes with proton transfer in the first excited singlet state. Transient absorption spectra and kinetics indicate that proton transfer also undergoes in the first triplet state with a transfer time of ∼ 3 ns. No transient absorption from the tautomer ground state indicates a rapid back proton transfer in the ground state.

Isotherm for $Ni-O_2$ Adsorption System

  • Kyoung-Hee Ham;Woon-Sun Ahn
    • Bulletin of the Korean Chemical Society
    • /
    • v.11 no.3
    • /
    • pp.231-235
    • /
    • 1990
  • The activation energy of dissociative adsorption of oxygen on polycrystalline nickel surface is calculated from adsorption isotherms obtained using X-ray photoelectron spectroscopy. Negative value of this activation energy (-5.9 kJ/mol) indicates that the adsorption takes place through an undissociated precursor state. An adsorption energy for this precursor state is calculated assuming the precursor state as a moleculary physisorbed state ($E_{ad}$ = -7.9 kJ/mol). Finally, an adsorption isotherm equation is derived as a function of the gas exposure, which agrees with the experimental isotherms reasonably good.

Isolation of $NH_4^+$-Tolerant Mutants of Actinobacillus succinogenes for Succinic Acid Production by Continuous Selection

  • Ye, Gui-Zi;Jiang, Min;Li, Jian;Chen, Ke-Quan;Xi, Yong-Lan;Liu, Shu-Wen;Wei, Ping;Ouyang, Ping-Kai
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.8
    • /
    • pp.1219-1225
    • /
    • 2010
  • Actinobacillus succinogenes, a representative succinicacid-producing microorganism, is seriously inhibited by ammonium ions, thereby hampering the industrial use of A. succinogenes with ammonium-ion-based materials as the pH controller. Therefore, this study isolated an ammonium-ion-tolerant mutant of A. succinogenes using a continuous-culture technique in which all the environmental factors, besides the stress (ammonium ions), were kept constant. Instead of operating the mutant-generating system as a nutrient-limited chemostat, it was used as a nutrient-unlimited system, allowing the cells to be continuously cultured at the maximum specific growth rate. The mutants were isolated on agar plates containing the acid-base indicator bromothymol blue and a high level of ammonium ions that would normally kill the parent strain by 100%. When cultured in anaerobic bottles with an ammonium ion concentration of 354 mmol/l, the mutant YZ0819 produced 40.21 g/l of succinic acid with a yield of 80.4%, whereas the parent strain NJ113 was unable to grow. When using $NH_4OH$ to buffer the culture pH in a 3.0 l stirredbioreactor, YZ0819 produced 35.15 g/l of succinic acid with a yield of 70.3%, which was 155% higher than that produced by NJ113. In addition, the morphology of YZ0819 changed in the fermentation broth, as the cells were aggregated from the beginning to the end of the fermentation. Therefore, these results indicate that YZ0819 can efficiently produce succinic acid when using $NH_4OH$ as the pH controller, and the formation of aggregates can be useful for transferring the cells from a cultivation medium for various industrial applications.

In Situ-DRIFTS Study of Rh Promoted CuCo/Al2O3 for Ethanol Synthesis via CO Hydrogenation

  • Li, Fang;Ma, Hongfang;Zhang, Haitao;Ying, Weiyong;Fang, Dingye
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.9
    • /
    • pp.2726-2732
    • /
    • 2014
  • The promoting effect of rhodium on the structure and activity of the supported Cu-Co based catalysts for CO hydrogenation was investigated in detail. The samples were characterized by DRIFTS, $N_2$-adsorption, XRD, $H_2$-TPR, $H_2$-TPD and XPS. The results indicated that the introduction of rhodium to Cu-Co catalysts resulted in modification of metal dispersion, reducibility and crystal structure. DRIFTS results of CO hydrogenation at reaction condition (P=2 MPa, $T=260^{\circ}C$) indicated the addition of 1 wt % rhodium improved hydrogenation ability of Cu-Co catalysts. The ethanol selectivity and CO conversion were both improved by 1 wt % Rh promoted Cu-Co based catalysts. The alcohol distribution over un-promoted and rhodium promoted Cu-Co based catalysts obeys A-S-F rule and higher chain growth probability was got on rhodium promoted catalyst.

Advances in the Technology of Solid State Hydrogen Storage Methods Using Novel Nanostructured Materials (나노구조물질을 이용한 고체수소저장 기술 동향)

  • Zacharia, Renju;Kim, Keun Young;Nahm, Kee Suk
    • Korean Chemical Engineering Research
    • /
    • v.43 no.4
    • /
    • pp.439-451
    • /
    • 2005
  • This article provides a panoramic overview of the state-of-the-art technologies in the field of solid-state hydrogen storage methods. The emerging solid-state hydrogen storage techniques, such as nanostructured carbon materials, metal organic framework (MOFs), metal and inter-metal hydrides, clathrate hydrates, complex chemical hydride are discussed. The hydrogen storage capacity of the solid-sate hydrogen storage materials increases in proportion to the surface area of the solid materials. Also, it is believed that new functional nanostructured materials will offer far-reaching solutions to the development of on-board hydrogen storage system for the application of the transportation vehicles.

Spectroscopic Properties of Flavonoids in Various Aqueous-Organic Solvent Mixtures

  • Park, Hyoung-Ryun;Daun, Yu;Park, Jong Keun;Bark, Ki-Min
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.1
    • /
    • pp.211-220
    • /
    • 2013
  • The characteristic fluorescence properties of quercetin (QCT) and apigenin (API) were studied in various $CH_3OH-H_2O$ and $CH_3CN-H_2O$ mixed solvents. The structure of QCT is completely planar. API is not planar at the ground state but becomes nearly planar at the excited state. If the molecules are excited to the $S_1$ state in organic solvents, QCT exhibits no fluorescence due to excited state intramolecular proton transfer (ESIPT) between the -OH and the carbonyl oxygen, but API shows significant fluorescence because ESIPT occurs slowly. If the molecules are excited to the $S_2$ state, both QCT and API exhibit strong $S_2{\rightarrow}S_o$ emission without any dual fluorescence. As the $H_2O$ composition of both solvents increases, the fluorescence intensity decreases rapidly due to the intermolecular hydrogen bonding interaction. The theoretical calculation further supports these results. The change in fluorescence properties as a function of the solvatochromic parameters was also studied.

Twist Boat Conformation of Thiane S-Oxide Both in Solid State and in Solution

  • Jeon, Dong-Ju;Kim, Ikyon
    • Bulletin of the Korean Chemical Society
    • /
    • v.29 no.7
    • /
    • pp.1369-1373
    • /
    • 2008
  • A stable twist boat conformation of thiane S-oxide 1a in solid state and in solution was unambiguously determined by single crystal X-ray crystallography and solution NMR analyses. On the contrary, the thiane Sdioxide 2 which was obtained from the oxidation of corresponding thiane S-oxide 1a was confirmed to adopt a regular chair conformation.