LEE Eung-Ho;KIM Jin-Soo;KIM Han-Ho;LEE Jin-Kyung;OH Kwang-Soo;KWON Chil-Sung
Korean Journal of Fisheries and Aquatic Sciences
/
v.19
no.1
/
pp.52-59
/
1986
As one of trials to process instant sardine foods which can be preserved at room temperature, three kinds of products were prepared as seasoned-dried product (control, C), liquid smoked seasoned-dried product(S) and antioxidant treated seasoned-dried product(E), and their processing conditions and quality stability during storage were examined. Raw sardines were dressed, steamed and then filleted. The sardine fillets were seasoned with the mixed seasoning solution containing $28.0\%$ of sorbitol, $14.0%$ of sugar, $5.6\%$ of table salt, $1.8\%$ of monosodium glutamate, $0.6\%$ of garlic powder and $50.0\%$ of water at $5^{\circ}C$ for 15 hours, and dipped for 45 seconds in $10\%$ Smoke-EZ solution. After liquid smoking, the seasoned and liquid smoked sardine fillets were dried at $45^{\circ}C$ for 4 hours, vacuum packed in laminated plastic film bag(polyester/casted polypropylene= $12{\mu}m/70{\mu}m,\;15{\times}16cm$), and finally pasteurized in water at $95^{\circ}C$ for 30 minutes. The results obtained from chemical and microbial experiments during storage are as follows : the moisture contents, water activity and pH of the products showed little change, and VBN of them slightly increased during storage. The TBA value and POV of the products (E, S) were lower than those of control product(C) considerably. In color values, L value (linghtness) decreased while a and b value (red and yellow) revealed a tendency to increase during storage. The fatty acid composition of the products were similar to those of raw sardine, the predominant fatty acids were 16:0, 20:5, 18:1 and 22:6. The products (E, S) have a good preservative effect on highly unsturated fatty acids during storage. Viable cell counts of those products were negative and histamine contents were less than 2.0 mg/100 g. Among the texture profiles, hardness, elasticity and cohesiveness of the products slightly decreased during storage. Judging from the sensory evaluations, liquid smoked seasoned-dried product(S) was the most desirable, and the products could be preserved in good condition for 40 days at $25{\pm}3^{\circ}C$.
Arsenic contamination around Au-Ag mining areas occurs mainly from the oxidation of arsenopyrite which is frequently contained in mine tailings. In weathered tailings, oxidation of sulfide minerals typically results in the formation of abundant ferric (oxy)hydroxides or (oxy)hydroxysulfates near the tailings surface, and arsenic may be associated with these secondary precipitates. In this study, solid phases of arsenic in weathered tailings of some Au-Ag mines were investigated through the SEM/EDS and sequential extraction analyses. The stability of As solid phases and the leaching potential were assessed with the variation of pH and Eh conditions. Oxidation of sulfides in the tailings samples was indicated by depletion of S molar concentrations compared to As and heavy metals. Under XRD examinations, jarosite as an Fe-oxyhydroxysulfate was found in the tailings of Deokeum, Dongil and Dadeok, and scorodite as an As-bearing crystalline mineral was identified from Dadeok which has the highest concentration of As (4.36 wt.%). Beudantite-like phases and some Pb-arsenates were also found under SEM/EDS analysis, and most of As phases were associated with Fe-(oxy)hydroxides and (oxy)hydroxysulfates despite a few arsenopyrite from Samgwang and Gubong. Sequential extraction analysis also showed that As was present predominantly as coprecipitated with Fe hydroxides from Dongil, Dadeok and Myungbong (72∼99%), and as sulfides (58%) and Fe hydroxide-associated forms (40%) from Samgwang and Gubong. In the tailings leaching experiment, As was released with high amounts by the dissolution of As-bearing Fe(oxy)hydroxysulfates in the lowest pH (2.7) conditions of Deokeum, and by desorption under alkaline conditions of Samgwang and Gubong. Higher leaching rates of arsenite(+3) were found under acidic conditions, which pose a higher risk to water quality. Changes in pH and Eh conditions coupled with microbial processes could influence the stabilities of the As solid phases, and thus, time amendments or landfilling of weathered tailings may result in enhanced As mobilization.
The Myoungbong mine located in Boseong-gun, Jellanamdo consists of Au-Ag bearing quartz veins which filled the fissures of Bulguksa granitic rocks of Cretaceous. The tailings obtained from the Myungbong mine were used to investigate the effects of various processes, such as oxidation of primary sulfides and formation(alteration) of secondary and/or tertiary minerals, on arsenic immobilization in tailings. This study was conducted via both mineralogical and chemical methods. Mineralogical methods used included gravity and magnetic separation, ultrasonic cleaning, and instrumental analyses(X-ray diffractometry, energy-dispersive spectroscopy, and electron probe microanalyzer) and aqua regia extraction technique for soils was applied to determine the elemental concentrations in the tailings. Iron (oxy)hydroxides formed as a result of oxidation of tailings were identified as three specific forms. The first form filled in rims and fissures of primary pyrites. The second one precipitated and coated the surfaces of gangue minerals and the final form was altered into yukonites. Initially, large amounts of acid-generating minerals, such as pyrite and arsenopyrite, might make the rapid progress of oxidation reactions, and lots of secondary minerals including iron (oxy)hydroxides and scorodite were formed. The rate of pH decrease in tailings diminished, in addition, as the exposure time of tailings to oxidation environments was prolonged and the acid-generating minerals were depleted. Rather, it is speculated that the pH of tailings increased, as the contribution of pH neutralization reactions by calcite contained in surrounding parental rocks became larger. The stability of secondary minerals, such as scorodite, were deteriorated due to the increase in pH, and finally arsenic might be leached out. Subsequently, calcimn and arsenic ions dissociated from calcites and scorodites were locally concentrated, and yukonite could be grown tertiarily. It is confirmed that this tertiary yukonite which is one of arsenate minerals and contains arsenic in high level plays a crucial role in immobilizing arsenic in tailings. In addition to immobilization of arsenic in yukonites, the results indicate that a huge amount of iron (oxy)hydroxides formed by weathering of pyrite which is one of typical primary minerals in tailings can strongly control arsenic behavior as well. Consequently, this study elucidates that through a sequence of various processes, arsenic which was leached out as a result of weathering of primary minerals, such as arsenopyrite, and/or redissolved from secondary minerals, such as scorodite, might be immobilized by various sorption reactions including adsorption, coprecipiation, and absorption.
As the hydrofluoric acid leak in Gumi-si, Gyeongsangbuk-do or hydrochloric acid leak in Ulsan, Gyeongsangnam-do demonstrated, chemical related accidents are mostly caused by large amounts of volatile toxic substances leaking due to the damages of storage tank or pipe lines of transporter. Safety assessment is the most important concern because such toxic material accidents cause human and material damages to the environment and atmosphere of the surrounding area. Therefore, in this study, a hydrofluoric acid leaked from a storage tank was selected as the study example to simulate the leaked substance diffusing into the atmosphere and result analysis was performed through the numerical Analysis and diffusion simulation of ALOHA(Areal Location of Hazardous Atmospheres). the results of a qualitative evaluation of HAZOP (Hazard Operability)was looked at to find that the flange leak, operation delay due to leakage of the valve and the hose, and toxic gas leak were danger factors. Possibility of fire from temperature, pressure and corrosion, nitrogen supply overpressure and toxic leak from internal corrosion of tank or pipe joints were also found to be high. ALOHA resulting effects were a little different depending on the input data of Dense Gas Model, however, the wind direction and speed, rather than atmospheric stability, played bigger role. Higher wind speed affected the diffusion of contaminant. In term of the diffusion concentration, both liquid and gas leaks resulted in almost the same $LC_{50}$ and ALOHA AEGL-3(Acute Exposure Guidline Level) values. Each scenarios showed almost identical results in ALOHA model. Therefore, a buffer distance of toxic gas can be determined by comparing the numerical analysis and the diffusion concentration to the IDLH(Immediately Dangerous to Life and Health). Such study will help perform the risk assessment of toxic leak more efficiently and be utilized in establishing community emergency response system properly.
One of alternative conventional technologies used for treatment of livestock wastes is composting process, and recently some mechanical composting processes are being practiced. It is, however, recognized the composting process also has its own limitations such as longer time requirement, and difficulties to estimate the degree of decomposition, etc. The incomplete compost contains potentially harmful materials to crops and public health due to instabilized organic contents and pathogenic organisms. The purpose of this investigation is to develop an innovative system whereby anxious livestock wastes are thoroughly stabilized and disinfected. Thus the overall management scheme should meet the following requirements. 1. A system should be in a cost-effective and environmentally sound manner. 2. Sludges must be chemically stabilized and bacteriologically safe. 3. Odor-free by product should be applied to crop land. 4. Sludges are sources of fertilizer nutrients and/or soil amendments to enhance crop production. 5. And they can be used as potential pH adjusting agent of the acidified soils. Overall effectiveness of the developed system is experimentally tested to satisfy the preset criteria and requirements. Major experiments are divided into four categories: they are 1. chemical stability test, 2. optimal condition test of stabilization process, 3. bacteriological examination and disinfection tests, and 4. deodorization tests The stabilization process is consisted of the stabilizing reaction process and the drying process. Stabilized wastes is dried by both sun dryer and rotary dryer. It is shown that an additive dosage of about g/kg solid in wastes with a minimum of 5-minutes reaction would be necessary for effective stabilization reaction. The stabilization process is consisted of the stabilizing reaction process and drying process. Stabilized wastes are dried by both sun dryer and rotary dryer. It is shown that an additive dosage of about 300g/kg solid in wastes with a minimum of 5-minutes reaction would be necessary for effective stabilization reaction. In the stabilization reaction process, the pH of wastes is lowered from initial values of 12.3 to 8.6. High pH prevents odor production and kills pathogenic organisms. Organic matter contents in the stabilized wastes are about 50% and the sum of contents of fertilizer elements such as total nitrogen, $P_2O_5$ and $K_2O$ are about 5.3%. The livestock wastes that are stabilized chemically and hygienically can be used as a good soil conditioner and/or organic fertilizer.
A mass production of chestnut necessiates the development of economic long-term storage method. The main objective of this study was to confirm the technical aspect of the chestnut storage method which was developed by two year project and to review the method of commercial application. The chestnut used for the experiments were separated in brine $(5.5{\sim}6.0^{\circ}\:B{\acute{a}}ume)$ into matured and unmatured lots and fumigated with $CS_2$ at a 5 $lb/27\;m^3$ level for $25{\sim}30\;hrs.$ The chestnuts were packed in wooden boxes with sawdust (50% moisture) in the ratio of 1 : 1 by volume. The boxes were stored in the cold room $(1{\pm}1^{\circ}C,\;85{\sim}95%\;RH)$ and the cellar ($0{\sim}10^{\circ}C$, controlled only by circulating night cool air). The results obtained were as follows: 1. Fully matured chestnut could be successfully preserved $8{\sim}9\;months$ at a l0% decay level in the cold room and $4{\sim}5\;months$ months in cellar. 2. Immatured chestnuts wire inferior to the matured in storage stability. At the maximum storage period, its storage life was two months shorter. 3. The heat transfer equation of piled chestnuts with sawdust can be suggested as $T_{\infty}-T_0=(T_{\infty}-T_0){\cdot}10^{-t/320}$ and j and $f_h$ values were 1 and 320 min, respectively. 4. The chestnuts in the package of storage unit had longer shelf life than naked chestnut during the retail distribution at ambient temperature.
In the previous paper, we isolated a bacterium that can hydrolyze various organic materials from soybean paste, including cellulose, lipids, starch, and protein. The activity and chemical properties of the crude enzymes produced by the isolate Bacillus subtilis CK-2 were further investigated. Cellulase showed the highest activity at pH 5.0 and $55^{\circ}C$. The stability of cellulase was maintained within the ranges of pH 5.0~10.0 and $20{\sim}50^{\circ}C$. Cellulolytic enzymes were activated by a $Co^{2+}$ ion, demonstrating the highest activity at a 0.45%(w/v) concentration of $Co^{2+}$. The optimal conditions for amylase were pH 5.0 and $50^{\circ}C$. The activity of amylase was stable within the ranges of pH 4.0~5.0 and $20{\sim}50^{\circ}C$. The $Co^{2+}$ ion was also necessary for amylase activity, which was the highest at a 0.2%(w/v) concentration of $Co^{2+}$. The optimal pH and temperature conditions of protease were pH 8.0 and $50^{\circ}C$. The activity of protease was stable within the ranges of pH 7.0~8.5 and $20{\sim}50^{\circ}C$. Protease activity was catalyzed by $Mn^{2+}$, which was the highest at a 0.125%(w/v) concentration of $Mn^{2+}$. The isolate B. subtilis CK-2 demonstrated a high activity of autolysin. Based on these results, we identified and suggested the optimal pH, temperature, and metal ion concentration in the use of the hydrolytic enzymes of B. subtilis CK-2 for industrial purposes.
The salt-fermented anchovy sauce (AS) was packed in round No. 307-1 can, and thermally processed at $121.1^{\circ}C$ to obtain Fo values of 3, 5 and 10. The changes of food components and qualifies by thermal processing of sterilized AS (RAS) were examined. The compositions of AS were as followed; pH 6.81, VBN 394.7 mg/100g, total nitrogen 2,195.5 mg%, amino-nitrogen 1,010.5 mg%, and acidity 10.5 ml. Viable cell counts of AS on 0%, 5%, 20% NaCl-medium were $2.9{\times}10^3,\;9.1{\times}10^3$ and not detected, respectively. And viable cell counts of RAS were not detected. Acidity, total nitrogen and amino nitrogen contents of AS decreased slightly with the severeness of heat treatments, whereas pH and VBN content were increased. Total free amino acid contents of raw AS and RAS were 12,802.5 mg% and $11,212.6{\sim}12,105.4\;mg%$, and major amino acids were alanine, glutamic acid, leucine, isoleucine, valine and lysine. Also contents of IMP, hypoxanthine, TMAO and TMA in AS and RAS were 42.1 mg% and $35.5{\sim}40.9\;mg%$, 103.7 mg% and $103.1{\sim}105.5\;mg%$, 78.8 mg% and $58.2{\sim}71.6\;mg%$, 55.8 mg% and $58.9{\sim}68.5\;mg%$ respectively. And a little changes were observed in whole volatile components of AS with severeness of heat treatments by GC chromatogram patterns. Judging from the chemical and sensory evaluations, the Fo 3 heat treatment sample was not inferior to raw AS, and maintained good quality for 1 year storage.
Biological products, such as live varicella vaccine, are composed of biological substances derived from biological organisms. It is very difficult to identify these biologics' characteristics by analysis of simple physical and chemical methods alone. So the reference material is essential in order to evaluate the quality of bilogics. The 1'st national standard for varicella live vaccine was manufactured, established in 2002 and 2003, and have been used for the manufacturer's quality control and national lot release since then. As the lack of its availability and the decrease of its stability, this study was initiated by National Institute of Food and Drug Safety Evaluation (NiFDS) in 2008 to manufacture and establish the 2nd national standard for varicella live vaccine. The candidate material was manufactured from one of domestic manufacterers and the joint research of the NiFDS and manufacturers of varicella live vaccine was conducted to estimate of the reliable virus content. In the collaborative study, 3 laboratories including NiFDS performed the virus content test more than 7 times and all assay results were statistically analyzed. The mean coefficient of variation (CV) was 1.24%, and the geometric mean titre (GMT) variation range of each laboratory was low. On the basis of the results of this study, the candidate material of 2nd national standard for varicella live vaccine was assigned a potency of 4.26 log10 pfu/0.5 mL, when reconstituted in 0.7 mL.
Kim, In-Young;Lee, Joo-Dong;Ryoo, Hee-Chang;Zhoh, Choon-Koo
Journal of the Society of Cosmetic Scientists of Korea
/
v.30
no.2
/
pp.159-165
/
2004
This study described about method that forms liquid crystal gel (LCG) by main ingredient with hydrogenated lechin (HL) in O/W emulsion system. Result of stability test is as following with most suitable LCG's composition. Composition of LCG is as following, to form liquid crystal, an emulsifier used 4.0wt% of cetostearyl alcohol (CA) by 4.0wt% of HL as a booster. Moisturizers contained 2wt% of glycerin and 3.0wt% of 1,3-butylene glycol (1,3-BG). Suitable emollients used 3.0wt% of cyclomethicone, 3.0wt% of isononyl isononanoate (ININ), 3.0wt% of cerpric/carprylic triglycerides (CCTG), 3.0wt% of macademia nut oil (MNO) in liquid crystal gel formation. On optimum conditions of LCG formation, the pHs were formed all well under acidity or alkalinity conditions (pH=4.0-11.0). Considering safety of skin, pH was the most suitable 6.0${\pm}$1.0 ranges. The stable hardness of LCG formation appeared best in 32 dyne/$\textrm{cm}^2$. Particle of LCG is forming size of 1-20$\mu\textrm{m}$ range, and confirmed that the most excellent LCG is formed in 1-6$\mu\textrm{m}$ range. According to result that observe shape of LCG with optical or polarization microscope, LCG could was formed, and confirmed that is forming multi -layer lamellar type structure around the LCG. Moisturizing effect measured clinical test about 20 volunteers. As a result, moisturizing effect of LCG compares to placebo cream was increased 36.6%. This could predicted that polyol group is appeared the actual state because is adsorbed much to round liquid crystal droplets to multi-lamellar layer's hydrophilic group. It could predicted that polyol group is vast quantity present phase that appear mixed because is adsorbed to round liquid crystal to multi-lamellar layer's hydrophilic group. This LCG formation theory may contribute greatly in cosmetics and pharmacy industry development.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.