• 제목/요약/키워드: Chemical sensors

검색결과 605건 처리시간 0.03초

A review on gold nanowire based SERS sensors for chemicals and biological molecules

  • Rashida Akter;Hyuck Jin Lee;Toeun Kim;Jin Woo Choi;Hongki Kim
    • 분석과학
    • /
    • 제37권4호
    • /
    • pp.201-210
    • /
    • 2024
  • Surface-enhanced Raman scattering (SERS) has emerged as a powerful technique for detecting and analyzing chemical and biological molecules at ultra-low concentrations. The effectiveness of SERS largely depends on structures with sub-10 nm gaps, prompting the proposal of various nanostructures as efficient SERS-active platforms. Among these, single-crystalline gold nanowires (AuNWs) are particularly promising due to their large dielectric constants, well-defined geometries, atomically smooth surfaces, and surface plasmon resonance across the visible spectrum, which produce strong SERS enhancements. This review comprehensively explores the synthesis, functionalization, and application of Au NWs in SERS. We discuss various methods for synthesizing AuNWs, including the vapor transport method, which influences their morphological and optical properties. We also review practical applications in chemical and biosensing, showcasing the adaptability of Au NWs-based SERS platforms in detecting a range of analytes, from environmental pollutants to biological markers. The review concludes with a discussion on future perspectives that aim to enhance sensor performance and broaden application domains, highlighting the potential of these sensors to revolutionize diagnostics and environmental monitoring. This review underscores the transformative impact of AuNW-based SERS sensors in analytical chemistry, environmental science, and biomedical diagnostics, paving the way for next-generation sensing technologies.

수정진동자를 이용한 센서시스템의 원리와 응용 (Principle of Sensor Systems by using a Quartz Crystal and Their Applications)

  • 김종민;장상목;김우식
    • Korean Chemical Engineering Research
    • /
    • 제47권6호
    • /
    • pp.655-668
    • /
    • 2009
  • 본 총설에서는 수정진동자 센서의 원리와 질량, 점성, 점탄성의 변화에 기초한 수정진동자 센서의 응용에 관하여 고찰하였다. 수정진동자의 기본원리와 공진주파수-공진저항 다이어그램에 관하여 상세히 기술하였다. 카본을 피막한 가스센스, 혈액응고를 이용한 센스, 전기화학분석, 결정화 분석 등에 관한 응용 예를 소개하였다. 이러한 연구 결과를 토대로 새로운 바이오센서나 화학센서 개발 가능성에 관하여 고찰하였다.

Conducting Metal Oxide Interdigitated Electrodes for Semiconducting Metal Oxide Gas Sensors

  • Shim, Young-Seok;Moon, Hi-Gyu;Kim, Do-Hong;Jang, Ho-Won;Yoon, Young-Soo;Yoon, Soek-Jin
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2011년도 제40회 동계학술대회 초록집
    • /
    • pp.65-65
    • /
    • 2011
  • We report the application of conducting metal oxide electrodes for semiconducting metal oxide gas sensors. Pt interdigitated electrodes have been commonly used for metal oxide gas sensor because of the low resistivity, excellent thermal and chemical stability of Pt. However, the high cost of Pt is an obstacle for the wide use of metal oxide gas sensors compared with its counterpart electrochemical gas sensors. Meanwhile, relatively low-cost conducting metal oxides are widely being used for light-emitting diodes, flat panel displays, solar cell and etc. In this work, we have fabricated $WO_3$ and $SnO_2$ thin film gas sensors using interdigitated electrodes of conducting metal oxides. Thin film gas sensors based on conducting metal oxides exhibited superior gas sensing properties than those using Pt interdigitated electrodes. The result was attributed to the low contact resistance between the conducting metal oxide and the sensing material. Consequently, we demonstrated the feasibility of conducting metal oxide interdigitated electrodes for novel gas sensors.

  • PDF

윤활유 분석 센서를 통한 기계상태진단의 문헌적 고찰(적용사례) (Review of Application Cases of Machine Condition Monitoring Using Oil Sensors)

  • 홍성호
    • Tribology and Lubricants
    • /
    • 제36권6호
    • /
    • pp.307-314
    • /
    • 2020
  • In this paper, studies on application cases of machine condition monitoring using oil sensors are reviewed. Owing to rapid industrial advancements, maintenance strategies play a crucial role in reducing the cost of downtime and improving system reliability. Consequently, machine condition monitoring plays an important role in maintaining operation stability and extending the period of usage for various machines. Machine condition monitoring through oil analysis is an effective method for assessing a machine's condition and providing early warnings regarding a machine's breakdown or failure. Among the three prevalent methods, the online analysis method is predominantly employed because this method incorporates oil sensors in real-time and has several advantages (such as prevention of human errors). Wear debris sensors are widely employed for implementing machine condition monitoring through oil sensors. Furthermore, various types of oil sensors are used in different machines and systems. Integrated oil sensors that can measure various oil attributes by incorporating a single sensor are becoming popular. By monitoring wear debris, machine condition monitoring using oil sensors is implemented for engines, automotive transmission, tanks, armored vehicles, and construction equipment. Additionally, such monitoring systems are incorporated in aircrafts such as passenger airplanes, fighter airplanes, and helicopters. Such monitoring systems are also employed in chemical plants and power plants for managing overall safety. Furthermore, widespread application of oil condition diagnosis requires the development of diagnostic programs.

Modeling of an embedded carbon nanotube based composite strain sensor

  • Boehle, M.;Pianca, P.;Lafdi, K.;Chinesta, F.
    • Advances in aircraft and spacecraft science
    • /
    • 제2권3호
    • /
    • pp.263-273
    • /
    • 2015
  • Carbon nanotube strain sensors, or so called "fuzzy fiber" sensors have not yet been studied sufficiently. These sensors are composed of a bundle of fiberglass fibers coated with CNT through a thermal chemical vapor deposition process. The characteristics of these fuzzy fiber sensors differ from a conventional nanocomposite in that the CNTs are anchored to a substrate fiber and the CNTs have a preferential orientation due to this bonding to the substrate fiber. A numerical model was constructed to predict the strain response of a composite with embedded fuzzy fiber sensors in order to compare result with the experimental results obtained in an earlier study. A comparison of the numerical and experimental responses was conducted based on this work. The longitudinal sensor output from the model matches nearly perfectly with the experimental results. The transverse and off-axis tests follow the correct trends; however the magnitude of the output does not match well with the experimental data. An explanation of the disparity is proposed based on microstructural interactions between individual nanotubes within the sensor.

Pt-AlGaN/GaN HEMT-based hydrogen gas sensors with and without SiNx post-passivation

  • Vuong, Tuan Anh;Kim, Hyungtak
    • 전기전자학회논문지
    • /
    • 제23권3호
    • /
    • pp.1033-1037
    • /
    • 2019
  • GaN-based sensors have been widely investigated thanks to its potential in detecting the presence of hydrogen. In this study, we fabricated hydrogen gas sensors with AlGaN/GaN heterojunction and investigated how the sensing performance to be affected by SiN surface passivation. The gas sensor employed a high electron mobility transistors (HEMTs) with 30 nm platinum catalyst as a gate to detect the hydrogen presence. SiN layer was deposited by inductively-coupled chemical vapor deposition as post-passivation. The sensors with SiN passivation exhibited hydrogen sensing characteristics with various gas flow rates and concentrations of hydrogen in inert background gas at $200^{\circ}C$ similar to the ones without passivation. Aside from quick response time for both sensors, there are differences in sensitivity and recovery time because of the existence of the passivation layer. The results also confirmed the dependence of sensing performance on gas flow rate and gas concentration.

Conjugated Diacetylene Supramolecules for Label-Free Biological Sensors and Chips

  • Ahn, Dong-June;Kim, Jong-Man
    • 한국고분자학회:학술대회논문집
    • /
    • 한국고분자학회 2006년도 IUPAC International Symposium on Advanced Polymers for Emerging Technologies
    • /
    • pp.37-38
    • /
    • 2006
  • Conjugated diacetylene supramolecules are interesting biomimetic materials in view of application to chemical and label-free biological sensors. These supramolecules are unique in changing color from blue to red upon specific binding events. Various binding events including viruses, toxins, glucose, and ionic interactions have been reported detectible. Here, we focus on fabrication of polydiacetylene supramolecule dot array patterns on solid substrates by using a conventional microarrayer. Each dot is found to possess the color-changing property as well as the fluorescence self-emission. This technique allows us, for the first time, to fabricate biochips based on polydiacetylene supramolecules. Label-free detection of small molecules and biological targets will be discussed.

  • PDF

Design and Synthesis of Metallopeptide Sensors: Tuning Selectivity with Ligand Variation

  • Kim, Joung-Min;Joshi, Bishnu Prasad;Lee, Keun-Hyeung
    • Bulletin of the Korean Chemical Society
    • /
    • 제31권9호
    • /
    • pp.2537-2541
    • /
    • 2010
  • We chose a fluorescent pentapeptide sensor (-CPGHE) containing a dansyl fluorophore as a model peptide and investigated whether the selectivity and sensitivity of the peptides for heavy and transition metal ions could be tuned by changing amino acid sequence. In this process, we developed a selective peptide sensor, Cp1-d (-HHPGE, $K_d\;=\;670\;nM$) for detection of $Zn^{2+}$ in 100% aqueous solution and a selective and sensitive peptide sensor, Cp1-e (-CCHPGE, $K_d\;=\;24\;nM$) for detection of $Cd^{2+}$ in 100% aqueous solution. Overall results indicate that the selectivity and sensitivity of the metallopeptide sensors to specific heavy and transition metal ions can be tuned by changing amino acid sequence.

내부 최적화를 이용한 화학 센서의 단기 드리프트 분석 및 보정 (Short Term Sensor's Drift Analysis and Compensation Using Internal Normalization)

  • 전진영;백종현;변형기
    • 센서학회지
    • /
    • 제24권4호
    • /
    • pp.270-273
    • /
    • 2015
  • One of the main problems when working the chemical sensor is the lack of repeatability and reproducibility of the sensor response. If the problem is not properly taken into consideration, the stability and reliability of the system using chemical sensors would be decreased. In this paper we analyzed the sensor's drift of short term and proposed a compensation method for reducing the effects of the drift in order to improve the stability and the reliability of the chemical sensor. The sensor drift was analyzed by a trend line graph and CV(coefficient of variation) was used to quantify. And we compensated for the drift by using the internal normalization. As a result it was found that the value of CV was decreased after compensation.

양극산화법으로 제작한 TiO2 나노튜브 박막의 구조 및 광전기화학 특성 분석 (Study on the Structure and Photoelectrochemical Properties of Anodized TiO2 Nanotube Films)

  • 이아름;박상현;김재엽
    • 센서학회지
    • /
    • 제27권4호
    • /
    • pp.264-268
    • /
    • 2018
  • Vertically-aligned $TiO_2$ nanotube electrodes have attracted considerable attention for applications in solar cells, catalysts, and sensors, because of their ideal structure for electron transport and electrolyte diffusion. Here, we prepare vertically-aligned $TiO_2$ nanotube electrodes using a two-step anodization process. The prepared $TiO_2$ nanotube electrodes exhibit uniform pore structures with an inner diameter of ~80-90 nm and wall thickness of ~20-25 nm. In addition, they exhibit an anatase crystal phase after a high-temperature annealing. The annealed $TiO_2$ nanotube electrodes are applied in dye-sensitized solar cells (DSSCs) as photoanodes. The fabricated DSSC exhibits conversion efficiencies of 3.46 and 2.15% with liquid- and gel-type electrolytes, respectively.