• Title/Summary/Keyword: Chemical remediation of wastewater

Search Result 15, Processing Time 0.031 seconds

Comparisons of Physical and Chemical Methods for Dealing with Biologically Pre-Treated Livestock Wastewater as a Post-Treatment (축산폐수 생물학적 처리수의 후처리를 위한 물리·화학적 단위 공정 비교)

  • Choi, Yong-Su;Hong, Seok-Won;Kwon, Gi-han;Jung, Il-Ho
    • Journal of Korean Society on Water Environment
    • /
    • v.20 no.2
    • /
    • pp.110-119
    • /
    • 2004
  • The combination of biological and physical/chemical technologies is a promising technique to reduce highly concentrated pollutants in livestock wastewater. It is suggested to treat livestock wastewater efficiently as follows: firstly, biodegradable organic matters, nitrogen and some of phosphorus should be removed by a biological treatment process and then residual non-biodegradable organic matters, color and phosphorus be eliminated by physicochemical technologies. In this study, therefore, the integrations of chemical coagulation, activated carbon adsorption, Fenton oxidation and ozonation were evaluated to provide appropriate post-treatment processes for biologically pre-treated livestock wastewater. After chemical coagulation followed by ozonation or Fenton oxidation process, the quality of treated wastewater could meet the discharge limit in Korea. However, a yellowish brown color still remained in the treated wastewater after a single method such as coagulation and Fenton oxidation was applied. The ozonation was found to be the most effective technology for the decolorization. Neither simple biological nor physicochemical treatment provides adequate decolorization and sufficient depletion of organics in livestock wastewater so far. Consequently, the integration of Fenton oxidation and ozonation with a biological treatment process is recommended to treat livestock wastewater in terms of removal efficiency.

Review on Application Progress of Carbon-Based Catalysts in Environmental Governance

  • Zheng, Xizhe;Huang, Yuming;Du, Changming
    • Journal of the Korean Chemical Society
    • /
    • v.66 no.4
    • /
    • pp.269-277
    • /
    • 2022
  • In recent years, carbon-based catalysts have become a research hotspot in environmental governance applications. Carbon-based catalysts have large surface areas, porous structures, multi-surface functional groups and excellent electron transfer capabilities, and can synergistically exhibit adsorption and catalytic performance. This article reviews the research progress of carbon-based catalysts in environmental governance, mainly including its application in wastewater treatment, exhaust gas purification and soil remediation. In view of the current difficulties in the research of carbon-based catalysts, the development prospects are proposed. We hope that this review will provide convenience for new entrants and researchers intending to employ carbon-based catalysts for the remediation of contaminated environment.

Chemical Remediation and Recirculation Technologies of Wastewater from Metal-Contaminated Soil Washing (금속오염(金屬汚染) 토양세척(土壤洗滌) 폐수(廢水)의 화학적(化學的) 처리(處理)와 재순환(再循環) 기술(技術))

  • Lim, Mi-Hee;Abn, Ji-Whan
    • Resources Recycling
    • /
    • v.20 no.3
    • /
    • pp.28-39
    • /
    • 2011
  • This review investigated theoretical principals and practical application examples on recirculation system of soil washing-wastewater treatment-treated water recycling. As for technologies which have attempted to remediating metals-contaminated soil in and around country, there are reactive barriers, encapsulation, solidification/stabilization, soil washing, and phytoremediation. Among those, in particular, this review covers soil washing technology which physicochemically removes contaminants from soils. The major drawbacks of this technology are to generate a large amount of wastewater which contains contaminants complexed with ligands of washing solution and needs additional treatment process. To solve these problems, many chemical treatment methods have been developed as follows: precipitation/coprecipitation, membrane filtration, adsorption treatment, ion exchange, and electrokinetic treatment. In the last part of the review, recent research and field application cases on soil washing wastewater treatment and recycling were introduced. Based on these integrated technologies, it could be achieved to solve the problem of soil washing wastewater and to enhance cost effective process by reducing total water resources use in soil washing process.

Chemistry of persulfates for the oxidation of organic contaminants in water

  • Lee, Changha;Kim, Hak-Hyeon;Park, Noh-Back
    • Membrane and Water Treatment
    • /
    • v.9 no.6
    • /
    • pp.405-419
    • /
    • 2018
  • Persulfates (i.e., peroxymonosulfate and peroxydisulfate) are capable of oxidizing a wide range of organic compounds via direct reactions, as well as by indirect reactions by the radical intermediates. In aqueous solution, persulfates undergo self-decomposition, which is accelerated by thermal, photochemical and metal-catalyzed methods, which usually involve the generation of various radical species. The chemistry of persulfates has been studied since the early twentieth century. However, its environmental application has recently gained attention, as persulfates show promise in in situ chemical oxidation (ISCO) for soil and groundwater remediation. Persulfates are known to have both reactivity and persistence in the subsurface, which can provide advantages over other oxidants inclined toward either of the two properties. Besides the ISCO applications, recent studies have shown that the persulfate oxidation also has the potential for wastewater treatment and disinfection. This article reviews the chemistry regarding the hydrolysis, photolysis and catalysis of persulfates and the reactions of persulfates with organic compounds in aqueous solution. This article is intended to provide insight into interpreting the behaviors of the contaminant oxidation by persulfates, as well as developing new persulfate-based oxidation technologies.

Enhanced alizarin removal from aqueous solutions using zinc Oxide/Nickel Oxide nano-composite

  • Basma E. Jasim;Ali J. A. Al-Sarray;Rasha M. Dadoosh
    • Analytical Science and Technology
    • /
    • v.37 no.1
    • /
    • pp.39-46
    • /
    • 2024
  • Alizarin dye, a persistent and hazardous contaminant in aquatic environments, presents a pressing environmental concern. In the quest for efficient removal methods, adsorption has emerged as a versatile and sustainable approach. This study focuses on the development and application of Zinc Oxide/Nickel Oxide (ZnO/NiO) nano-composites as adsorbents for alizarin dye removal. These semiconducting metal oxide nano-composites exhibit synergistic properties, offering enhanced adsorption capabilities. Key parameters affecting alizarin removal, such as contact time, adsorbent dosage, pH, and temperature, were systematically investigated. Notably, the ZnO/NiO nano-composite demonstrated superior performance, with a maximum alizarin removal percentage of 76.9 % at pH 6. The adsorption process followed a monolayer pattern, as suggested by the Langmuir model. The pseudo-second-order kinetics model provided a good fit to the experimental data. Thermodynamic analysis indicated that the process is endothermic and thermodynamically favorable. These findings underscore the potential of ZnO/NiO nano-composites as effective and sustainable adsorbents for alizarin dye removal, with promising applications in wastewater treatment and environmental remediation.

Biosorption of uranium by Bacillus sp.FB12 isolated from the vicinity of a power plant

  • Xu, Xiaoping;He, Shengbin;Wang, Zhenshou;Zhou, Yang;Lan, Jing
    • Advances in environmental research
    • /
    • v.2 no.3
    • /
    • pp.245-260
    • /
    • 2013
  • Biosorption represents a technological innovation as well as a cost effective excellent remediation technology for cleaning up radionuclides from aqueous environment. In the present study, a bacteria strain FB12 with high adsorption rate of uranium ion was isolated from the vicinity of the nuclear power plant. It was tentatively identified as Bacillus sp.FB12 according to the 16S rDNA sequencing. Efforts were made to further improve the adsorption rate and genetic stability by UV irradiation and UV-LiCl cooperative mutagenesis. The improved strain named Bacillus sp.UV32 obtains excellent genetic stability and a high adsorption rate of 95.9%. The adsorption of uranium U (VI) by Bacillus sp.UV32 from aqueous solution was examined as a function of metal ion concentration, cell concentration, adsorption time, pH, temperature, and the presence of some foreign ions. The adsorption process of U (VI) was found to follow the pseudo-second-order kinetic equation. The adsorption isotherm study indicated that it preferably followed the Langmuir adsorption isotherm. The thermodynamic parameters values calculated clearly indicated that the adsorption process was feasible, spontaneous and endothermic in nature. These properties show that Bacillus sp.UV32 has potential application in the removal of uranium (VI) from the radioactive wastewater.

Cempedak Durian (Artocarpus sp.) Peel as a Biosorbent for the Removal of Toxic Methyl Violet 2B from Aqueous Solution

  • Dahri, Muhammad Khairud;Chieng, Hei Ing;Lim, Linda B.L.;Priyantha, Namal;Mei, Chan Chin
    • Korean Chemical Engineering Research
    • /
    • v.53 no.5
    • /
    • pp.576-583
    • /
    • 2015
  • This paper aims to investigate the potential use of cempedak durian peel (CDP) from Negara Brunei Darussalam, which is low-cost, locally available, eco-friendly and highly efficient to remove methyl violet (MV) dye from aqueous solutions. The time required for equilibrium to be reached is 2.0 h with no adjustment of pH necessary. FTIR analysis was indicative of the involvement of -COOH and C=O functional groups in adsorption process. The Langmuir model provided the best fit with maximum adsorption capacity of $0.606mmol\;g^{-1}$. Thermodynamics data indicate that the adsorption is spontaneous, feasible and endothermic in nature. Best regeneration of CDP's adsorption ability is achieved by base solution, showing about 95% removal efficiency of MV even after 5 cycles, indicating that CDP can be regenerated and reused. This, together with its high adsorption capacity, makes CDP a potential adsorbent for the removal of MV in wastewater.

Environmental Impact of Soil Washing Process Based on the CO2 Emissions and Energy Consumption (토양세척 공정의 환경영향 분석 - 이산화탄소 배출량 및 에너지 사용량을 중심으로)

  • Kim, Do-Hyung;Hwang, Bo-Ram;Her, Namguk;Jeong, Sangjo;Baek, Kitae
    • Korean Chemical Engineering Research
    • /
    • v.52 no.1
    • /
    • pp.119-125
    • /
    • 2014
  • This study evaluated the environmental impacts of a soil washing (SW) process, especially, we compared the on-site and off-site remediation of TPH-contaminated soil using green and sustainable remediation (GSR) tool. To assess relative contribution of each stage on environmental footprints in the entire soil washing process, we classified the process into four major stages: site foundation (stage I), excavation (stage II), separation & washing (stage III), and wastewater treatment (stage IV). In on-site SW process, the relative contribution of $CO_2$ emissions and energy consumption were 87.1% and 80.4%, respectively in stage I, and in off-site SW process, the relative contribution of $CO_2$ emissions and energy consumption were 82.7% and 80.5%, respectively in stage II. In conclusion, the major factor contributing environmental impact in the SW process were consumable materials including steel and stainless steel for washing equipment in on-site treatment and fuel consumption for transportation of soil in off-site treatment.

Development of Prussian Blue-laden Magnetic Janus Micro-adsorbents for Remediation of Cs+ Ions in Wastewater (프러시안 블루가 함입된 자성 야누스 미세 흡착제 개발 및 이를 이용한 폐수 내 세슘정화)

  • Ju-Eon Jung;Dong-Hyeon Kyoung;Sung-Min Kang
    • Korean Chemical Engineering Research
    • /
    • v.62 no.2
    • /
    • pp.181-190
    • /
    • 2024
  • Here, we develop a centrifugal microfluidic reactor with simple, fast, and high-throughput manner for the generation of magnetic Janus micro-adsorbents (MAs). By using the multi-micronozzle consisting of two separate aligned needles and centrifugal tubes, we have synthesized highly monodispersed Prussian blue- and magnetic nanoparticle-laden micro-adsorbents (PB-MNP-MAs). The enhanced cesium (Cs+) adsorption was demonstrated by conducting the adsorption isotherm and kinetics experiment which can be contributed to the porous nature of the Ca-alginate networks with a high surface area of embedded PB nanoparticles, resulting to perform rapid adsorption activity within 10 min. After Cs+ adsorption process, the as-synthesized PB-MNP-MAs were successfully harvested by introducing the external magnetic fields. Therefore, we believe that our findings can be provided new direction towards the development of advanced functional adsorbents in biological and environmental fields.

Ecological health assessment of Mae Kha Canal, Chiang Mai Province, Thailand in 2023

  • Onalenna Manene;Nick Deadman;Chotiwut Techakijvej;Songyot Kullasoot;Pitak Sapewisut;Nattawut Sareein;Chitchol Phalaraksh
    • Journal of Ecology and Environment
    • /
    • v.48 no.1
    • /
    • pp.110-119
    • /
    • 2024
  • Background: The Mae Kha Canal is one of Chiang Mai's most important waterways. It supports local agriculture, irrigation, and transportation as well as provides stormwater drainage to prevent floods. Due to the unregulated rapid urbanization of the city and lack of efficient waste and wastewater management systems over the past few decades, the canal has become heavily polluted. This study aimed to evaluate the water quality of Mae Kha canal through assessment of the physico-chemical water quality and coliform bacteria. Moreover, benthic macroinvertebrates were samples and assessed using the Biological Monitoring Working Party (BMWPThai) and Average Score Per Taxon (ASPTThai) as biological indices. Results: The physico-chemical showed low dissolved oxygen levels, high levels of ammonia and phosphates, and elevated levels of biochemical oxygen demand, indicating that the water quality had significantly deteriorated. The canal was found to be heavily polluted, with most sites falling into the polluted to very heavily polluted. Coliform bacteria analysis revealed alarmingly high levels of total coliform bacteria and fecal coliform bacteria in the canal. The BMWPThai and ASPTThai scores indicated poor to very poor water quality. Conclusions: The physico-chemical and coliform bacteria indicated that the water quality of the Mae Kha canal had significantly deteriorated. The biological indices also indicated the poor to very poor water quality. This study underscores the urgent need for comprehensive remediation efforts, emphasizing strategic planning, investment, and community engagement to revive the canal's ecological health and water quality.