• Title/Summary/Keyword: Chemical reaction kinetics

Search Result 736, Processing Time 0.025 seconds

Kinetics and Mechanism of the Pyridinolysis of Aryl Ethyl Chlorothiophosphates in Acetonitrile

  • Adhikary, Keshab Kumar;Lee, Hai-Whang
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.11
    • /
    • pp.3947-3951
    • /
    • 2011
  • The nucleophilic substitution reactions of Y-aryl ethyl chlorothiophosphates with X-pyridines are studied kinetically in acetonitrile at $55.0^{\circ}C$. The Hammett and Bronsted plots for substituent X variations in the nucleophiles exhibit biphasic concave upwards with a break point at X = 3-Me. The substituents of X = 4-CN and 4-Ac show great positive deviations from both the Hammett and Bronsted plots. The Hammett plots for substituent Y variations in the substrates exhibit biphasic concave upwards with a minimum point at Y = H. The obtained values of the cross-interaction constants (${\rho}_{XY}$) are all in spite of the biphasic free energy correlations for both substituent X and Y variations, since the ${\rho}_X$values with both the strongly and weakly basic pyridines are almost constant. A stepwise mechanism with a rate-limiting leaving group departure from the intermediate is proposed where the distance between X and Y does not vary from the intermediate to the second transition state. A frontside attack is proposed with the strongly basic pyridines based on the considerably great magnitudes of ${\rho}_X$ and ${\beta}_X$ values and a backside attack is proposed with the weakly basic pyridines based on the relatively small magnitudes of ${\rho}_X$ and ${\beta}_X$. The positive deviations of the two strong ${\pi}$-acceptor parasubstituents, X = 4-Ac and 4-CN, from both the Hammett and Bronsted plots are rationalized by the great extents of bond formation and breaking.

Kinetics and Mechanism of the Benzylaminolysis of O,O-Diphenyl S-Aryl Phosphorothioates in Dimethyl Sulfoxide

  • Adhikary, Keshab Kumar;Lee, Hai-Whang
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.5
    • /
    • pp.1625-1629
    • /
    • 2011
  • Kinetic studies of the reactions of O,O-diphenyl Z-S-aryl phosphorothioates with X-benzylamines have been carried out in dimethyl sulfoxide at 55.0 $^{\circ}C$. The Hammett (log $k_2$ vs ${\sigma}_X$) and Bronsted [log $k_2$ vs $pK_a(X)$] plots for substituent X variations in the nucleophiles are biphasic concave downwards with a maximum point at X = H, and the unusual positive ${\rho}_X$ and negative ${\beta}_X$ values are obtained for the strongly basic benzylamines. The sign of the cross-interaction constant (${\rho}_{XZ}$) is negative for both the strongly and weakly basic nucleophiles. Greater magnitude of ${\rho}_{XZ}$ value is observed with the weakly basic nucleophiles (${\rho}_{XZ}$ = -2.35) compared to with the strongly basic nucleophiles (${\rho}_{XZ}$ = -0.03). The deuterium kinetic isotope effects ($k_H/k_D$) involving deuterated benzylamines [$XC_6H_4CH_2ND_2$] are primary normal ($k_H/k_D$ > 1). The proposed mechanism is a concerted $S_N2$ involving a frontside nucleophilic attack with a hydrogen bonded, four-center-type transition state for both the strongly and weakly basic nucleophiles. The unusual positive ${\rho}_X$ and negative ${\beta}_X$ values with the strongly basic benzylamines are rationalized by through-space interaction between the ${\pi}$-clouds of the electron-rich phenyl ring of benzylamine and the phenyl ring of the leaving group thiophenoxide.

Kinetics and Reaction Mechanism for Alkaline Hydrolysis of Y-Substituted-Phenyl Diphenylphosphinates

  • Hong, Hyo-Jeong;Lee, Jieun;Bae, Ae Ri;Um, Ik-Hwan
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.7
    • /
    • pp.2001-2005
    • /
    • 2013
  • The second-order rate constants ($k_{OH^-}$) for the reactions of Y-substituted-phenyl diphenylphosphinates (4a-4i) with $OH^-$ in $H_2O$ at $25.0{\pm}0.1^{\circ}C$ have been measured spectrophotometrically. Comparison of $k_{OH^-}$ with $k_{EtO^-}$ (the second-order rate constants for the corresponding reactions with $EtO^-$ in ethanol) has revealed that $EtO^-$ is less reactive than $OH^-$ although the former is ca. 3.4 $pK_a$ units more basic than the latter, indicating that the reactivity of these nucleophiles is not governed by their basicity alone. The Br${\o}$nsted-type plot for the reactions of 4a-4i with $OH^-$ is linear with ${\beta}_{lg}$ = -0.36. The Hammett plot correlated with ${\sigma}^-$ constants results in a slightly better correlation than that correlated with ${\sigma}^{\circ}$ constants but exhibits many scattered points. In contrast, the Yukawa-Tsuno plot for the same reactions exhibits an excellent linear correlation with ${\rho}$ = 0.95 and r = 0.55. The r value of 0.55 implies that a negative charge develops partially on the O atom of the leaving group. Thus, the reactions of 4a-4i with $OH^-$ have been concluded to proceed through a concerted mechanism.

The Production of HBsAg in the Recombinant Yeast Cells (재조합 효모 세포내에서의 간염백신 생산)

  • Park, Cha-Yong;Lee, Hei-Chan
    • Microbiology and Biotechnology Letters
    • /
    • v.14 no.6
    • /
    • pp.455-460
    • /
    • 1986
  • Dane particle was prepared from the plasma of chronic HBsAg carrier with high levels of HBsAg activity. DNA extracted front Dane particle core after a DNA polymerase reaction with $\alpha$-($^{32}$P) dNTP, was identified as HBV DNA by liquid scintillation counter and agarose gel electrophoresis-G.M. counting. To produce Hepatitis B surface antigen for use as a vaccine against Hepatitis B virus infection, yeast strains harboring recombinant plasmid with Apase promoter was used. Recombinant plasmid was construced from pHBV 130 and pAN 82, transformed into E coli, and then transferred into yeast strains. HBsAg was produced by derepression in Burkholder minimal medium with controlled inorganic phosphate concentration. The kinetics of HBsAg production was also investigated. Total HBsAg activity increased rapidly between 3 and 6 hours after transfer to phosphate-free medium and reached a maximum at around 9th hour. The transfer into phosphate-free medium after 6 hours in high phosphate cell growth medium gave maximum activity.

  • PDF

Comparison Study on the Removal of Cationic Dyes from Aqueous Suspension of Maghnia Montmorillonite (Maghnia 산 Montmorillonite 수용액으로부터 양이온 염료의 제거 비교연구)

  • Elaziouti, A.;Laouedj, N.
    • Journal of the Korean Chemical Society
    • /
    • v.54 no.3
    • /
    • pp.300-309
    • /
    • 2010
  • The ability of sodium-exchanged clay particles as an adsorbent for the removal of commercial dyes, Methylene blue (MB) and Malachite green oxalate (MG) from aqueous solutions has been investigated under various experimental conditions. The effect of the experimental parameters, such as pH solution, agitation time, adsorbate concentration and adsorbent dose were examined. Maximum adsorption of dyes, i.e. >90% has been achieved in aqueous solutions using 0.03 g of clay at a pH of 7 and 298 K for both dyes. The adsorption process was a fast and the equilibrium was obtained within the first 5 min. For the adsorption of both MB and MG dyes, the pseudo-second-order reaction kinetics provides the best correlation of the experimental data. The adsorption equilibrium results follow Langmuir and Dubini-Radushkevich (D-R) isotherms with high regression coefficients $R^2$ > 0.98. The mean free energies $E_a$ of adsorption from D-R model were 3.779 and 2.564 kj/mol for MB and MG respectively, which corresponds to a physisorption process.

The Kinetics of Solution Copolymerization of styrene and n-Butylmethacrylate in a Continuous Stirred Tank Reactor(CSTR) (연속반응기에서 Styrene과 n-Butylmethacrylate의 용액 공중합의 속도론)

  • Kim, Nam Seok;Seul, Soo Duk
    • Applied Chemistry for Engineering
    • /
    • v.8 no.3
    • /
    • pp.347-356
    • /
    • 1997
  • Solution copolymerization of Styrene(St) and n-Butylmethacrylate(BMA) was carried out with Benzoylperoxide (BPO) as an initiator in toluene at $80^{\circ}C$ in a continuous stirred tank reactor. Reaction volume and residence time were 0.6 liters, 3 hours respectively. The monomer reactivity ratios, $r_1$(St) and $r_2$(BMA) were determined by both the Kelen-Tlidos method and the Fineman-Ross method ; $r_1$=0.75(0.67), $r_2$=0.61(0.56). The cross-termination factor, $\phi$ factor of the copolymer over the entire St compositions ranged from 0.44 to 0.78. The $\phi$ factors of St-BMA copolymer increased with increasing St compositions. Our present system showed that the continuous copolymerization of St with BMA followed second-order kinetic behavior. The simulated conversions and copolymerization rates were compared with the experimental results. The average time to reach dynamic steady-state was three times and half of the residence time.

  • PDF

Computational Drug Discovery Approach Based on Nuclear Factor-κB Pathway Dynamics

  • Nam, Ky-Youb;Oh, Won-Seok;Kim, Chul;Song, Mi-Young;Joung, Jong-Young;Kim, Sun-Young;Park, Jae-Seong;Gang, Sin-Moon;Cho, Young-Uk;No, Kyoung-Tai
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.12
    • /
    • pp.4397-4402
    • /
    • 2011
  • The NF-${\kappa}B$ system of transcription factors plays a crucial role in inflammatory diseases, making it an important drug target. We combined quantitative structure activity relationships for predicting the activity of new compounds and quantitative dynamic models for the NF-${\kappa}B$ network with intracellular concentration models. GFA-MLR QSAR analysis was employed to determine the optimal QSAR equation. To validate the predictability of the $IKK{\beta}$ QSAR model for an external set of inhibitors, a set of ordinary differential equations and mass action kinetics were used for modeling the NF-${\kappa}B$ dynamic system. The reaction parameters were obtained from previously reported research. In the IKKb QSAR model, good cross-validated $q^2$ (0.782) and conventional $r^2$ (0.808) values demonstrated the correlation between the descriptors and each of their activities and reliably predicted the $IKK{\beta}$ activities. Using a developed simulation model of the NF-${\kappa}B$ signaling pathway, we demonstrated differences in $I{\kappa}B$ mRNA expression between normal and different inhibitory states. When the inhibition efficiency increased, inhibitor 1 (PS-1145) led to long-term oscillations. The combined computational modeling and NF-${\kappa}B$ dynamic simulations can be used to understand the inhibition mechanisms and thereby result in the design of mechanism-based inhibitors.

Kinetics and Mechanism of the Anilinolysis of Ethylene Phosphorochloridate in Acetonitrile

  • Barai, Hasi Rani;Lee, Hai-Whang
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.12
    • /
    • pp.4185-4190
    • /
    • 2011
  • The nucleophilic substitution reactions of ethylene phosphorochloridate (1c) with substituted anilines ($XC_6H_4NH_2$) and deuterated anilines ($XC_6H_4ND_2$) are investigated kinetically in acetonitrile at $5.0^{\circ}C$. The anilinolysis rate of 1c involving a cyclic five-membered ring is four thousand times faster than its acyclic counterpart (1a: diethyl chlorophosphate) because of great positive value of the entropy of activation of 1c (${\Delta}S^{\neq}=+30\;cal\;mol^{-1}K^{-1}$ compared to negative value of 1a (${\Delta}S^{\neq}=-45\;cal\;mol^{-1}K^{-1}$) over considerably unfavorable enthalpy of activation of 1c (${\Delta}H^{\neq}=27.7\;kcal\;mol^{-1}$) compared to 1a (${\Delta}H^{\neq}=8.3\;kcal\;mol^{-1}$). Great enthalpy and positive entropy of activation are ascribed to sterically congested transition state (TS) and solvent structure breaking in the TS. The free energy correlations exhibit biphasic concave upwards for substituent X variations in the X-anilines with a break point at X = 3-Me. The deuterium kinetic isotope effects are secondary inverse ($k_H/k_D$ < 1) with the strongly basic anilines and primary normal ($k_H/k_D$ > 1) with the weakly basic anilines and rationalized by the TS variation from a dominant backside attack to a dominant frontside attack, respectively. A concerted $S_N2$ mechanism is proposed and the primary normal deuterium kinetic isotope effects are substantiated by a hydrogen bonded, four-center-type TS.

Kinetic Studies on the Mechanism of Hydrolysis of ${\alpha}$-Nitrobenzaldehydephenylhydrazone (${\alpha}$-Nitrobenzaldehydephenylhydrazone의 가수분해에 대한 반응속도론적 연구)

  • Tae-Rin Kim;Won-Sik Choi
    • Journal of the Korean Chemical Society
    • /
    • v.22 no.1
    • /
    • pp.30-36
    • /
    • 1978
  • The kinetics of hydrolysis of ${\alpha}$-nitrobenzaldehydephenylhydrazone derivatives (p-$NO_2$, m-$NO_2$, p-Cl, p-$CH_3$) have been investigated by UV spectrometry in 25% dioxane-water at $25^{\circ}C$ and a rate equation which can be applied over wide pH range was obtained. From the rate equation and the effect of solvent, substituent and pKa on the rate equation, the following reaction mechanisms were proposed. Below pH 3.0 the hydrolysis of ${\alpha}$-nitrobenzaldehydephenylhydrazone proceeds by $S_N1$ mechanism, while above pH 4.0 the hydrolysis proceeds through 1,3-dipole ion mechanism. In the range of pH from 3.0 to 4.0 these two reactions occur competitively.

  • PDF

Design of the Fixed-Bed Catalytic Reactor for the Maleic Anhydride Production (무수마레인산 생산을 위한 고정층 촉매 반응기 설계)

  • Yoon, Young Sam;Koo, Eun Hwa;Park, Pan Wook
    • Applied Chemistry for Engineering
    • /
    • v.10 no.3
    • /
    • pp.467-476
    • /
    • 1999
  • This paper analyzed the behavior of fixed-bed catalytic reactor (FBCR) which synthesizing maleic anhydride(MA) from the selective oxidation of n-butane. The behavior of FBCR describing convection-diffusion-reaction mechanism is examined by using two-dimensional pseudohomogeneous plug-flow transient model, with the kinetics of Langmuir-Hinshelwood type. Prediction model is composed by optimum parameter estimation from temperature profile, yield and conversion of single FBCR on operating condition variations of Sharma's pilot-plant experiment. A double FBCR with same yield and conversion for single FBCR generated a $8.96^{\circ}C$ lower hot spot temperature than a single FBCR. We could predict parametric sensitivity according to the variation of possible operating condition (temperature, concentration, volumetric flow of feed reactant and coolant flow rate) of single and double FBCR. Double FBCR showed the behavior of more operating range than single FBCR. Double FBCR with nonuniform activities could assure safety operation condition for the possible variation of operating condition. Also, double FBCR had slightly higher than the single FBCR in conversion and yield.

  • PDF