• Title/Summary/Keyword: Chemical pressure vessel

Search Result 64, Processing Time 0.02 seconds

A Study on Measurement of Internal Defects of Pressure Vessel by Digital Shearography(II) (전자 전단 간섭법을 이용한 압력용기의 내부결함 측정에 관한 연구(II) (전자 전단 간섭법을 이용한 압력용기의 내부결함 검출 시스템의 오차 분석))

  • Kang, Young-June;Park, Nak-Kyu;Ryu, Won-Jae;Kim, Dong-Woo
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.22 no.4
    • /
    • pp.402-410
    • /
    • 2002
  • Recently the necessity of study on optical measuring method using laser to detect the pipeline's defect in nuclear facilities, chemical industries and power plants has been increased. Because laser light can be delivered to a remote area without any difficulties, the application of laser in many industries can solve several difficulties from the limitation of access in danger area and reduce the risks of workers. Therefore, we applied a new experimental technique to the measurement of internal defects in pressure vessels with the combination of shearography and image processing technique and detected the internal cracks of pressure vessels in the former paper. In this paper, we used the same optical system as in the former study and found the optimum shearing magnitude by comparing the real length of specimen with experimental results. A variety of conditions were applied to certify the validity of this method. Actually, several specimens which have different lengths and depths were used in this experiment under the three diverse pressure. Consequently, we have carried out this experiment to determine the limit of measurement ability with analyzing errors.

Assessment of Autoxidative Resistance for Organic Solvent by Pressure Monitoring Test

  • Kito, Hayato;Fujiwara, Shintaro;Kumasaki, Mieko;Miyake, Atsumi
    • International Journal of Safety
    • /
    • v.9 no.1
    • /
    • pp.43-46
    • /
    • 2010
  • In the recycle process of organic solvent, the atmospheric oxygen can cause autoxidation and product peroxide. The time-saving method to evaluate the hazards has been required. In this study, oxygen pressure monitoring experiment was proposed as a new method to evaluate autoxidative resistances of solvents. Some of organic solvents were pressurized by oxygen and kept under isothermal condition. At the same time, the pressure in the vessel tracked. Iodometrical titration, thermal analysis and spectroscopic analysis were performed to measure peroxide concentration, the heat of reaction and chemical bonding change. From the results that THF has larger oxygen consumption rate than CPME, it is considered that autoxidative resistance of THF is lower than that of CPME. This method enables to obtain results in shorter time than other methods. These experimental results were consistent with the previous research with longer test durations [1-2].

Evaluation of limit load analysis for pressure vessels - Part II: Robust methods

  • Chen, Xiaohui;Gao, Bingjun;Wang, Xingang
    • Steel and Composite Structures
    • /
    • v.23 no.1
    • /
    • pp.131-142
    • /
    • 2017
  • Determining limit load for a pressure bearing structure using elastic-plastic finite element analysis was computationally very expensive. A series of robust methods using elastic modulus adjustment techniques (EMAP) to identify the limit load directly were proposed. The numerical implementation of the robust method had the potential to be an attractive alternative to elastic-plastic finite element analysis since it was simple, and required less computational effort and computer storage space. Another attractive feature was that the method provided a go/no go criterion for the limit load, whereas the results of an elastic-plastic analysis were often difficult to interpret near the limit load since it came from human sources. To explore the performance of the method further, it was applied to a number of configurations that include two-dimensional and three-dimensional effects. In this study, limit load of cylinder with nozzle was determined by the robust methods.

Preliminary Structural Sizing of the Co-axial Double-tube Type Primary Hot Gas Duct for the Nuclear Hydrogen Reactor (수소생산용 원자로에서 동심축 이중관형 1차 고온가스덕트의 예비 구조정산)

  • Song, Kee-nam;Kim, Y-W
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.4 no.2
    • /
    • pp.1-6
    • /
    • 2008
  • Very High Temperature Gas Cooled Reactor (VHTR) has been selected as a high energy heat source for nuclear hydrogen generation. The VHTR can produce hydrogen from heat and water by using a thermo-chemical process or from heat, water, and natural gas by steam reformer technology. A co-axial double-tube primary hot gas duct (HGD) is a key component connecting the reactor pressure vessel and the intermediate heat exchanger (IHX) for the VHTR. In this study, a preliminary design analysis for the primary HGD of the nuclear hydrogen system was carried out. These preliminary design activities include a determination of the size, a strength evaluation and an appropriate material selection. The determination of the size was undertaken based on various engineering concepts, such as a constant flow velocity model, a constant flow rate model, a constant hydraulic head model, and finally a heat balanced model.

  • PDF

Failure Analysis of Mn-Steel High Pressure Gas Cylinder (Mn 강재 고압용기의 파단 원인 분석)

  • Baik, Nam-Ik;Lee, Se-Jong
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.11 no.4
    • /
    • pp.283-294
    • /
    • 1998
  • This paper presents an investigation why Mn-steel high pressure gas cylinders have been failed in service. The fractured cylinders have been collected to identify the reason of the failure using various methods. The undamaged, new cylinder has also been tested for the base data. We examined the chemical compositions and fracture facets as well as the mechanical properties of the vessels. The microstructural observations of the fractured regions of the cylinder did not indicate the noticeable defects which might cause the failure. The experiments of cylinders on the compositinal and mechanical tests showed that the cylinder was in good shape according the standards of gas pressure vessel. The morphological analysis of the fracture surfaces concluded that the origin of the failure was the local weak segments induced by the external impact to the cylinder, which result in a sudden, fast fracture.

  • PDF

Evaluation of limit load analysis for pressure vessels - Part I: Linear and nonlinear methods

  • Chen, Xiaohui;Gao, Bingjun;Wang, Xingang
    • Steel and Composite Structures
    • /
    • v.22 no.6
    • /
    • pp.1391-1415
    • /
    • 2016
  • Limit load of pressure bearing structures was reviewed in this article. By means of the finite element analysis, limit load of pressurized cylinder with nozzle was taken as an example. Stress classification method and Elastic-plastic finite element analysis combining with limit load determination methods were used to determine limit load of cylinder with nozzle. Comparison of limit load determined by different methods, the results indicated that limit load determined by linearization method was the smallest. Limit load determined by twice elastic slope criterion was the nearest than experimental results. Elastic-plastic finite element analysis had comparably computational precision, but required time consuming. And then the requirements of computer processing and storage capacity by power system became higher and higher. Most of criteria for limit load estimation included any human factors based on a certain substantive characteristics of experimental results. The reasonable criterion should be objective and operational.

A Study on the Overpressure Estimation of BLEVE (BLEVE로 인한 과압 예측에 관한 연구)

  • Kim In-Tae;Kim In-Won;Song Hee-Oeul
    • Journal of the Korean Institute of Gas
    • /
    • v.4 no.1 s.9
    • /
    • pp.69-76
    • /
    • 2000
  • Explosion Quantities and flashing mass resulting from the variation of temperature are calculated by a computer program, BLEVE ESTIMATOR, to carry out the risk assessment of BLEVE. The damages caused by the BLEVE are estimated under the explosion of the simulation condition similar to the Puchun LP gas station accident, and the results are compared with the commercial program SAFER of Dupont CO. Explosion quantities and flashing mass increase exponentially with the increase of explosion temperature. These values for propane are relatively higher than those for n-butane. In conditions of higher vessel temperature, vessel pressure, and liquid ratio of containment, higher overpressures are calculated.

  • PDF

Improved prediction model for H2/CO combustion risk using a calculated non-adiabatic flame temperature model

  • Kim, Yeon Soo;Jeon, Joongoo;Song, Chang Hyun;Kim, Sung Joong
    • Nuclear Engineering and Technology
    • /
    • v.52 no.12
    • /
    • pp.2836-2846
    • /
    • 2020
  • During severe nuclear power plant (NPP) accidents, a H2/CO mixture can be generated in the reactor pressure vessel by core degradation and in the containment as well by molten corium-concrete interaction. In spite of its importance, a state-of-the-art methodology predicting H2/CO combustion risk relies predominantly on empirical correlations. It is therefore necessary to develop a proper methodology for flammability evaluation of H2/CO mixtures at ex-vessel phases characterized by three factors: CO concentration, high temperature, and diluents. The developed methodology adopted Le Chatelier's law and a calculated non-adiabatic flame temperature model. The methodology allows the consideration of the individual effect of the heat transfer characteristics of hydrogen and carbon monoxide on low flammability limit prediction. The accuracy of the developed model was verified using experimental data relevant to ex-vessel phase conditions. With the developed model, the prediction accuracy was improved substantially such that the maximum relative prediction error was approximately 25% while the existing methodology showed a 76% error. The developed methodology is expected to be applicable for flammability evaluation in chemical as well as NPP industries.

A Study on Measurement of Internal Defects of Pressure Vessel by Digital Shearography(I) (전자 전단 간섭법을 이용한 압력용기의 내부결함 측정에 관한 연구(I))

  • Kang, Young-June;Park, Nak-Kyu;Ryu, Won-Jae;Kim, Kyung-Suk
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.22 no.4
    • /
    • pp.393-401
    • /
    • 2002
  • Pipelines in power plants, nuclear facilities and chemical industries are often affected by corrosion effects. It is important to inspect the internal defects in pipelines in oder to guarantee safe operational condition. We have taken relatively much time, cost and manpower to use conventional NDT methods because these methods are contact measuring methods. In this paper, we used digital shearography, a laser-based optical method which allows full-field measurement of surface displacement derivatives. This method has many advantages in practical use, such as low sensitivity to environmental noise, simple optical configuration and real time measurement. The experiment was performed with pressure vessels which has different internal cracks and detected internal cracks in the pressure vessels at a real time using phase shifting method.

Development of Integrated Design System for High Temperature, High Pressure Parts for Chemical Plants (화학플랜트 고온고압부 설계 효율화를 위한 일관시스템 구축)

  • Jeong Dong Gwan
    • Journal of the Korean Institute of Gas
    • /
    • v.2 no.4
    • /
    • pp.1-6
    • /
    • 1998
  • In order to increase design efficiency, it is required to design steam boiler pressure parts systematically considering daily start-stop operation and load variation. The objective of this research is to develope an integrated system for increasing design efficiency of boiler pressure parts. The developed system consists of three program modules: (1) flexibility design module for the header stub considering fatigue life, (2) fatigue limit calculation and life evaluation module for the thick-walled boiler pressure part under cyclic operation using TRD301 code, (3) drawing automation module for the header and drum producing design drawings, welding data and bill of materials.

  • PDF