• Title/Summary/Keyword: Chemical oxygen demand

Search Result 688, Processing Time 0.023 seconds

Metabolic Analysis of Poly(3-Hydroxybutyrate) Production by Recombinant Escherichia coli

  • WONG, HENG HO;RICHARD J. VAN WEGEN;JONG-IL CHOI;SANG YUP LEE
    • Journal of Microbiology and Biotechnology
    • /
    • v.9 no.5
    • /
    • pp.593-603
    • /
    • 1999
  • Poly(3-hydroxybutyrate) (PHB) production by fermentation was examined under both restricted- and ample-oxygen supply conditions in a single fed-batch fermentation. Recombinant Escherichia coli transformed with the PHB production plasmid pSYLl07 was grown to reach high cell density (227 g/l dry cell weight) with a high PHB content (78% of dry cell weight), using a glucose-based minimal medium. A simple flux model containing 12 fluxes was developed and applied to the fermentation data. A superior closure (95%) of the carbon mass balance was achieved. When the data were put into use, the results demonstrated a surprisingly large excretion of formate and lactate. Even though periods of severe oxygen limitation coincided with rapid acetate and lactate excretion, PHB productivity and carbon utilization efficiency were not significantly impaired. These results are very positive in reducing oxygen demand in an industrial PHA fermentation without sacrificing its PHA productivity, thereby reducing overall production costs.

  • PDF

A Study on the Appropriateness as Organic Matters Indicator and the Distribution of Chemical Oxygen Demand and Total Organic Carbon in Masan Bay, Korea (마산만 해수 중 화학적산소요구량과 총유기탄소 분포 특성 및 유기물 지표로서의 적절성 검토)

  • PARK, MI-OK;LEE, YONG-WOO;CHO, SEONG-AH;KIM, HYE-MI;PARK, JUN-KUN;KIM, SUNG-GIL;KIM, SEONG-SOO;LEE, SUK MO
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.26 no.2
    • /
    • pp.82-95
    • /
    • 2021
  • We investigated the temporal and spatial distribution characteristics of chemical oxygen demand (COD) and total organic carbon (TOC) in all 13 locations of Masan Bay from February to November in 2015. The COD and TOC contents were high during the June-August period when the pollution load increased. In particular, the concentrations of COD and TOC were about twice as high in the surface water as in the bottom water. In spatial distribution, the COD and TOC concentrations at the inner bay were about twice as high as those of the outer bay in Masan Bay. As a result of estimating the oxidation efficiency of COD from the surface layer of Masan Bay in 2015 based on the theoretical oxygen demand (TOD), it was at the level of about 23%. Due to the low oxidation efficiency of COD, there is a risk that the organic matter in Masan Bay will be somewhat underestimated. Therefore, for quantitative analysis of organic matter, COD and TOC analyses need to be combined.

The Distribution Characteristics of Grain Size and Organic Matters of Surface Sediments from the Nakdong-Goryeong Mid-watershed (낙동·고령 중권역의 표층 퇴적물 입도 조성 및 유기물질 분포 특성 변화)

  • Kim, Shin;Ahn, Jungmin;Kim, Hyounggeun;Kwon, Heongak;Kim, Gyeonghoon;Shin, Dongseok;Yang, Deukseok
    • Journal of Environmental Science International
    • /
    • v.27 no.6
    • /
    • pp.411-423
    • /
    • 2018
  • To investigate the distribution characteristics of grain size and organic matter of surface sediments from the Nakdong-Goryeong Mid-watershed, surface sediments were collected and analyzed. The samples were collected from six sited at four different times between May 2013 and May 2014. The were analyzed for grain size, water content, ignition loss, chemical oxygen demand, total organic carbon and total nitrogen. The surface sediments were mainly composed of medium sand (mean 44.7%) and coarse sand (mean 32.8%) and became coarser in May 2014. Fine sediments at the site NG-2 were poorly sorted and positively skewed, and occur in a tributary environment that is relatively low-energy compared with the other sites. The water content at the studied sites (15.3 ~ 34.9%) averaged 20.25%, and ignition loss (0.4 ~ 5.8%) and total nitrogen (274 ~ 2493 mg/kg) averaged 1.33% and, 696 mg/kg, respectively. These values indicated that the sediments were not seriously contaminated when compared with the sediment pollution evaluation standard of the National Institute of Environmental Research. The chemical oxygen demand (mean 0.17%) was at the non-polluted level compared with United States Environmental Protection Agency sediment quality standards. The total organic carbon (mean 0.18%) at all sites except site NG-2 (lowest effect level) was the no effect level of the Ontario sediment quality guidelines. The COD/IL (0.02 ~ 0.20) and C/N (0.73 ~ 6.76) were less than 1 and 10, respectively. Organic matter in the study area produced naturally from aquatic organisms. Results of principal component analysis showed that fine sediments (very fine sand and silt) were significantly affected by organic matters (ignition loss, chemical oxygen demand, total organic carbon and total nitrogen). In addition, the highest organic matters content in the study area occurred at the site with the finest sediments (NG-2).

Removal of Waste Generated by Flounder (Paralichthys olivaceus) in Aquarium using a Foam Separator (활어수조에서 넙치 사육시 포말분리장치를 이용한 오염물 제거)

  • SHIN Jeong-Sik;LEE Chang-Kuen;JEONG Ho-Su;LEE Min-Su;LEE Jin-Kyung;SUH Keun-Hack
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.37 no.6
    • /
    • pp.498-504
    • /
    • 2004
  • Removal of waste generated by Paralichthys olivaceus in the seawater aquarium using a foam separator was investigated. Protein concentration without a foam separator continuously increased until 3 days after stocking and reached at 25 mg/L after 5 days stocking, but protein concentration became lower than the initial protein concentration (2.5 mg/L) with a foam separator. The trends of other fish wastes such as ammonia, total suspended solids (TSS) and chemical oxygen demand (COD) were similar to protein. Dissolved oxygen (DO) in the aquarium decreased below 6.0 mg/L without a foam separator, but with a foam separator the average DO in the aquarium was 7.3 mg/L. Foam separation with the increase of superficial air velocity (SAV) was more effective than that with the fixed SAV. This study showed that wastewater. treatment of seawater aquarium using a foam separator is effective method for a fish waste removal and oxygen supply.

Analysis of Efficiency of Bacillus subtilis To Treat Bagasse Based Paper and Pulp Industry Wastewater-A Novel Approach

  • Karichappan, Thirugnanasambandham;Venkatachalam, Sivakumar;Jeganathan, Prakash Maran
    • Journal of the Korean Chemical Society
    • /
    • v.58 no.2
    • /
    • pp.198-204
    • /
    • 2014
  • In this present study, bagasse based pulp and paper industry wastewater was treated under different operating conditions such as initial pH (6-8), temperature ($25-35^{\circ}C$) and contact time (3-7 days) by using Bacillus subtilis. Response surface methodology (RSM) coupled with Box-Behnken response surface design (BBD) was employed to investigate the effect of process variables on the responses such as turbidity, biological oxygen demand (BOD) and chemical oxygen demand (COD) removal. The experimental data were analyzed by Pareto analysis of variance (ANOVA) and the second order polynomial models were developed. Interactive effects of the process variables on the responses were studied using plotting 3D response surface contour graph and the optimum process conditions were found to be: initial pH of 7, temperature of $30^{\circ}C$ and contact time of 5 days. Under these conditions, removal efficiencies of turbidity, BOD and COD were found to be 85%, 93% and 80% respectively which are close agreement with real experiments. These results indicate that the treatment of bagasse based pulp and paper industry wastewater using Bacillus subtilis is an effective and novel technique.

Spatio-temporal Water Quality Characteristics of Major Streams in Pal-dang Watershed (팔당수계 주요하천 수질의 시·공간적 특성)

  • Han, Mideok;Lee, Eunju;Oh, Jogyo;Kim, Woongsoo;Lee, Changhee;Namkung, Eun;Chung, Wookjin
    • Journal of Korean Society on Water Environment
    • /
    • v.25 no.3
    • /
    • pp.394-403
    • /
    • 2009
  • A total of 52 sampling sites were selected in the stream network of the upper Paldang watershed (e.g. Kyonan, Gapyeong, Jojong, Chengmi, Bockha, Yanghwa and Heuk streams). Over the time period of April 2007-February 2008, 1820 samples were collected and analyzed for physico-chemical variables of the upper watershed in order to investigate spatio-temporal water quality variation in particular the relationship with land use. Although temporal variations of water quality in each stream were similar and were significantly influenced by flow, spatial variations in each stream varied as physico-chemical characteristics of upper watershed. As a result of regression analysis, Biological Oxygen Demand (BOD), Chemical Oxygen Demand (COD), Total Nitrogen (T-N), and Total phosphorus (T-P) concentration were the most significantly and positively associated with people population density. It is necessary to manage not only water quality but also land use of upper watershed and flow flux.

Deodorization of Swine Wastewater by Rhodospirillum rubrum N-1 (Rhodospirillum rubrum N-1을 이용한 양돈폐수의 악취제거)

  • Choi, Kyung-Min;Kim, Jong-Seung
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.6 no.1
    • /
    • pp.13-20
    • /
    • 1998
  • Rhodospirillum rubrum N-1 was inoculated to manipulated swine wastewater of 20,000 mg/L as Biochemical Oxygen Demand (BOD) to study the effect of aeration on swine wastewater deodorization. Biological and physico-chemical parameters were determined at 1 day interval for 9 days. Removals of BOD, volatile fatty acids (VFAs), and phosphate were 54.6%, 87.0%, and 54.5%, respectively. No significant changes were observed in the concentrations of total nitrogen, total phosphorus, nitrate, nitrite, hydrogen sulfide, and mercaptane.

  • PDF

Modeling and Optimization of High Strength Wastewater Treatment Using the Electro Oxidation Process (전기산화공법을 이용한 고농도폐수 처리공정의 모델링 및 최적화)

  • Lee, Hongmin;Lee, Sangsun;Hwang, Sungwon;Jin, Dongbok
    • Korean Chemical Engineering Research
    • /
    • v.54 no.3
    • /
    • pp.340-349
    • /
    • 2016
  • Electro oxidation system was designed in this study for the reduction of COD (Chemical Oxygen Demand) from high-strength wastewater, produced during refinery turnaround period. First, BDD (Boron Doped Diamond) electrode was synthesized and electro oxidation system of actual industrial wastewater was developed by adopting the synthesized BDD electrode. The experiments were carried out under various operating conditions under certain range of current density, pH, electrolyte concentration and reaction time. Secondly, reaction kinetics were identified based on the experimental results, and the kinetics were embedded into a genetic mathematical model of the electro oxidation system. Lastly, design and operating parameters of the process were optimized to maximize the efficiency of the pretreatment system. The coefficient of determination ($R^2$) of the model was found to be 0.982, and it proved high accuracy of the model compared with experimental results.

Dairy wastewater treatment using microalgae for potential biodiesel application

  • Choi, Hee-Jeong
    • Environmental Engineering Research
    • /
    • v.21 no.4
    • /
    • pp.393-400
    • /
    • 2016
  • The aim of this study was to evaluate the biomass production and dairy wastewater treatment using Chlorella vulgaris. The results indicated that the maximum percentages of biochemical oxygen demand, chemical oxygen demand, suspended solids, total nitrogen, and total phosphorus removed were 85.61%, 80.62%, 29.10%, 85.47%, and 65.96%, respectively, in dairy effluent at 10 d. A maximum of 1.23 g/L dry biomass was obtained in 7 d. The biomass productivity was strongly influenced by the nutrient reduction in the dairy effluent. The biodiesel produced by the C. vulgaris in the dairy effluent was in good agreement with the American Society of Testing and Materials-D6751 and European Standards 14214 standards. Therefore, using dairy effluent for microalgal cultures could be a useful and practical strategy for an advanced, environmentally friendly treatment process.

Parametric study of brewery wastewater effluent treatment using Chlorella vulgaris microalgae

  • Choi, Hee-Jeong
    • Environmental Engineering Research
    • /
    • v.21 no.4
    • /
    • pp.401-408
    • /
    • 2016
  • The aim of this study was to evaluate the biomass and lipid production of Chlorella vulgaris and its nutrient removal capability for treatment of brewery wastewater effluent. The results indicate that the maximum biochemical oxygen demand (BOD) (91.43%) and chemical oxygen demand (COD) (83.11%) were removed by C. vulgaris with aeration in the absence of light. A maximum of 0.917 g/L of dry biomass was obtained with aeration in the dark conditions, which also demonstrated the highest amount of unsaturated fatty acids at 83.22%. However, the removal of total nitrogen (TN) and total phosphorus (TP) with these aeration and light conditions was 9.7% and 11.86% greater than that of other conditions. The removal of BOD and COD and the production of biomass and lipids with aeration in the dark and the TN and TP removal with aeration and light were more effective than other conditions in the brewery wastewater effluent in the presence of C. vulgaris.