References
- Drisssen W, Vereijken. Recent developments in biological treatment of brewery effluent. The institute and Guild of Brewing Convention; 2-7 March 2003; Livingstone, Zambia.
- Choi HJ. Effect of Mg-Sericite flocculant for treatment of brewery wastewater. Appl. Clay Sci. 2015;115:145-149. https://doi.org/10.1016/j.clay.2015.07.037
- Ryu BG, Kim J, Kim K, Choi YE, Han JI, Yang JW. High-cell-density cultivation oleaginous yeast Cryptococcus curvatus for biodiesel production using organic waste from the brewery industry. Bioresour. Technol. 2013;135:357-364. https://doi.org/10.1016/j.biortech.2012.09.054
- Farooq WF, Lee YC, Ryu BG, et al. Two-stage cultivation of two Chlorella sp. strains by simultaneous treatment of brewery wastewater and maximizing lipid productivity. Bioresour. Technol. 2013;132:230-238. https://doi.org/10.1016/j.biortech.2013.01.034
- Doubla A, Laminsi A, Nzali A, Njoyim E, Kamsu-Kom J, Brisset JL. Organic pollutants abatement and biodecontamination of brewery effluents by a non-terminal quenched plasma at atmospheric pressure. Chemosphere 2007;69:332-337. https://doi.org/10.1016/j.chemosphere.2007.04.007
- Parawira W, Kudita I, Nyandoroh MG, Zvauya R. A study of industrial anaerobic treatment of opaque beer brewery wastewater in a tropical climate using a full-scale UASB reactor seeded with activated sludge. Process Biochem. 2005;40: 593-599. https://doi.org/10.1016/j.procbio.2004.01.036
- Dai H, Yang X, Dong T, Ke Y, Wang T. Engineering application of MBR process in the treatment of beer brewing wastewater. Modern Appl. Sci. 2010;4:103-109.
- Wang X, Feng YJ, Lee H. Electricity production from beer brewery wastewater using single chamber microbial cell. Water Sci. Technol. 2008;57:1117-1121. https://doi.org/10.2166/wst.2008.064
- Mathuriya AS, Sharma VN. Treatment of brewery wastewater and production of electricity through microbial fuel cell technology. Int. J. Biotechnol. Biochem. 2010;6:71-80.
- Shao X, Peng D, Teng Z, Ju X. Treatment of brewery wastewater using anaerobic sequencing batch reactor (ASBR). Bioresour. Technol. 2008;99:3182-3186. https://doi.org/10.1016/j.biortech.2007.05.050
- Madaeni SS, Mansourpanah Y. Screening membranes for COD removal from dilute wastewater. Desalination 2006;197:23-32. https://doi.org/10.1016/j.desal.2006.01.015
- Mata TM, Melo AC, Simoes M, Caetano NS. Parametric study of a brewery effluent treatment by microalgae Scenedesmus obliquus. Bioresour. Technol. 2012;107:151-158. https://doi.org/10.1016/j.biortech.2011.12.109
- Simate GS, Cluetta J, Iyukea SE, et al. The treatment of brewery wastewater for reuse: State of the art. Desalination 2011;273: 235-247. https://doi.org/10.1016/j.desal.2011.02.035
- Raposo MFJ, Oliveira SE, Castro PM, Bandarra NM, Morais RM. On the utilization of microalgae for brewery effluent treatment and possible application of the produced biomass. J. Int. Brew. 2010;116:285-292. https://doi.org/10.1002/j.2050-0416.2010.tb00433.x
- Chiu SY, Kao CY, Chen TY, Chang YB, Kuo CM, Lin CS. Cultivation of microalgal Chlorella for biomass and lipid production using wastewater as nutrient resource. Bioresour. Technol. 2015;184:179-189. https://doi.org/10.1016/j.biortech.2014.11.080
- Pittman JK, Dean AP, Osundeko O. The potential of sustainable algal biofuel production using wastewater resources. Bioresour. Technol. 2011;102:17-25. https://doi.org/10.1016/j.biortech.2010.06.035
- Schneider T, Graff-Honninger S, French WT, et al. Lipid and carotenoid production by oleaginous red yeast Rhodotorula glutinis cultivated on brewery effluents. Energy 2013;61:34-43. https://doi.org/10.1016/j.energy.2012.12.026
- Abreu AP, Fernandes B, Vicente AA, Teixeira J, Dragone G. Mixotrophic cultivation of Chlorella vulgaris using industrial dairy waste as organic carbon source. Bioresour. Technol. 2012;118:61-66. https://doi.org/10.1016/j.biortech.2012.05.055
- Choi HJ, Yu SW. Influence of crude glycerol on the biomass and lipid content of microalgae. Biotechnol. Biotechnol. Equip. 2015;29:506-513. https://doi.org/10.1080/13102818.2015.1013988
- APHA. Standard methods for the examination of water and wastewater. 22nd ed. Washington D.C. American Public Health Association ; 2012.
- Mata TM, Mendes AM, Caetano NS, Martins AA. Sustainability and economic evaluation of microalgae grown in brewery wastewater. Bioresour. Technol. 2014;168:151-158. https://doi.org/10.1016/j.biortech.2014.04.091
- Simate GS. Water treatment and reuse in breweries. Brewing Microbiol. 2015;425-456.
- Mitra D, Van Leeuwen J, Lamsal B. Heterotrophic/mixotrophic cultivation of oleaginous Chlorella vulgaris on industrial co-products. Algal Res. 2012;1:40-48. https://doi.org/10.1016/j.algal.2012.03.002
- Gupta PL, Lee SM, Choi HJ. A mini review: Photobioreactor for large scale algal cultivation. World J. Microbiol. Biotechnol. 2015;31:1409-1417. https://doi.org/10.1007/s11274-015-1892-4
- Perez-Garcia O, Escalante FME, de-Bashan LE, Bashan Y. Heterotrophic cultures of microalgae: Methabolism and potential products. Water Res. 2011;45:11-36. https://doi.org/10.1016/j.watres.2010.08.037
- Choi HJ, Lee SM. Effect of optical panel thickness for nutrient removal and cultivation of microalgae in the photobioreactor. Biopro. Biosyst. Eng. 2014;37:697-705. https://doi.org/10.1007/s00449-013-1039-7
- Choi HJ. Effect of optical panel distance in a photobioreactor for nutrient removal and cultivation of microalgae. World J. Microbiol. Biotechnol. 2014;30:2015-2023. https://doi.org/10.1007/s11274-014-1626-z
- Devi MP, Subhash GV, Mohan SV. Heterotrophic cultivation of mixed microalgae for lipid accumulation and wastewater treatment during sequential growth and starvation phases: effect of nutrient supplementation. Renew. Energy 2012;43: 276-283. https://doi.org/10.1016/j.renene.2011.11.021
- Choi HJ, Lee SM. Effect of the N/P ratio on biomass productivity and nutrient removal from municipal wastewater. Biopro. Biosys. Eng. 2015;38:761-766. https://doi.org/10.1007/s00449-014-1317-z
- Ebrahimian A, Kariminia HR, Vosoughi M. Lipid production in mixotrophic cultivation of Chlorella vulgaris in a mixture of primary and secondary municipal wastewater. Renew. Energy 2014;71:502-508. https://doi.org/10.1016/j.renene.2014.05.031
- Meesters PAEP, Huijberts GNM, Eggink G. High cell density cultivation of lipid accumulating yeast Cryptococcus curvatus using glycerol as a carbon source. Appl. Microbiol. Biot. 1996;45: 575-579. https://doi.org/10.1007/s002530050731
- Liang Y, Sarkany N, Cui Y. Biomass and lipid productivities of Chlorella vulgaris under autotrophic, heterotrophic and mixotrophic growth conditions. Biotechnol. Lett. 2009;31:1043-1049. https://doi.org/10.1007/s10529-009-9975-7
- Qiao H, Wang G, Zhang X. Isolation and characterization of Chlorella sorokiniana GXNN01(Chlorophyta) with the properties of heterotrophic and microaerobic growth. J. Phycol. 2009;45:1153-1162. https://doi.org/10.1111/j.1529-8817.2009.00736.x
- Gao C, Zhai Y, Ding Y, Wu Q. Application of sweet sorghum for biodiesel production by heterotrophic microalga Chlorella protothecoides. Appl. Energy 2009;87:756-761.
- Yeh KL, Chang JS. Effects of cultivation conditions and media composition on cell growth and lipid productivity of indigenous microalga Chlorella vulgaris ESP-31. Bioresour. Technol. 2012;105:120-127. https://doi.org/10.1016/j.biortech.2011.11.103
- Heredia-Arroyo T, Wei W, Ruan R, Hu B. Mixotrophic cultivation of Chlorella vulgaris and its potential application for the oil accumulation from non-sugar materials. Biomass Bioenergy 2011;5:2-10.
- Choi HJ, Lee JM. Application of saccharified acorn-starch for biomass and lipid ccumulation of microalgae. J. Korean Soc. Water Environ. 2016;32:197-204. https://doi.org/10.15681/KSWE.2016.32.2.197
- Lin TS, Wu JY. Effect of carbon source on growth and lipid accumulation of newly isolated microalga cultured under mixtrophic condition. Bioresour. Technol. 2015;184:100-107. https://doi.org/10.1016/j.biortech.2014.11.005
Cited by
- The enhanced biomass and lipid accumulation in Coccomyxa subellipsoidea with an integrated treatment strategy initiated by brewery effluent and phytohormones vol.34, pp.2, 2018, https://doi.org/10.1007/s11274-018-2408-9
- Combined Electrocoagulation and Chemical Coagulation in Treating Brewery Wastewater vol.12, pp.3, 2020, https://doi.org/10.3390/w12030726
- Diatoms Biotechnology: Various Industrial Applications for a Greener Tomorrow vol.8, pp.None, 2016, https://doi.org/10.3389/fmars.2021.636613
- Effect of pot-ale enrichment on the treatment efficiency of primary settled wastewater by the microalga Chlorella vulgaris vol.327, pp.None, 2016, https://doi.org/10.1016/j.jclepro.2021.129436
- Primary brewery wastewater as feedstock for the yeast Rhodosporidium toruloides and the microalga Tetradesmus obliquus mixed cultures with lipid production vol.113, pp.None, 2016, https://doi.org/10.1016/j.procbio.2021.12.019