• Title/Summary/Keyword: Chemical instability

Search Result 198, Processing Time 0.025 seconds

Dynamics Transition of Electroconvective Instability Depending on Confinement Effect (공간 제약 효과에 따른 전기와류 불안정성의 동역학 전이)

  • Lee, Seungha;Hyun, Cheol Heon;Lee, Hyomin
    • Korean Chemical Engineering Research
    • /
    • v.59 no.4
    • /
    • pp.626-631
    • /
    • 2021
  • One of the nonlinear electrokinetic phenomena around ion exchange membrane is electroconvective instability which can be found in various electrokinetic applications such as electrodialysis, electrochemical battery, microfluidic analysis platform, etc. Such instability acts as a positive transport mechanism for the electrodialysis via amplifying mass transport rate. On the other hands, in the electrochemical battery and the microfluidic applications, the instability provokes unwanted mass transport. In this research, to control the electroconvective instability, the onset of the instability was analyzed as a function of confinement effect as well as applied voltage. As a result, we figured out that the dynamic behavior of electroconvective instability transited as a sequence of stable regime - static regime - chaotic regime depending on the applied voltage and confinement effect. Furthermore, stability curves about the dynamic transition were numerically determined as well. Conclusively, the confinement effect on electroconvective instability can be applied for effective means to control the electrokinetic chaos.

Mechanisms of Oblique Shock-Induced Combustion Instability

  • Choi, Jeong-Yeol;Jeung, In-Seuck
    • Journal of the Korean Society of Combustion
    • /
    • v.7 no.1
    • /
    • pp.23-30
    • /
    • 2002
  • Instability of oblique detonation waves (ODW) at off-attaching condition was investigated through a series of numerical simulations. Two-dimensional wedge of finite length was considered in $H_2/O_2/N_2$ mixtures at superdetonative condition. Numerical simulation was carried out with a compressible fluid dynamics code and a detailed hydrogen-oxygen combustion mechanism. Present result reveals that there is a chemical kinetic limit of the ODW detachment, in addition to the theoretical limit predicted by Rankine-Hugoniot theory with equilibrium chemistry. Result also presents that ODW still attaches at a wedge as an oblique shock-induced flame showing periodically unstable motion, if the Rankine-Hugoniot limit of detachment is satisfied but the chemical kinetic limit is not. Mechanism of the periodic instability is considered as interactions of shock and reaction waves coupled with chemical kinetic effects. From the investigation of characteristic chemical time, condition of the periodic instability is identified as follows; at the detaching condition of the Rankine-Hugoniot theory, (1) flow residence time is smaller than the chemical characteristic time, behind the detached shock wave with heat addition, (2) flow residence time should be greater than the chemical characteristic time, behind an oblique shock wave without heat addition.

  • PDF

Hot- Fire Injector Test for Determination of Combustion Stability Boundaries Using Model Chamber

  • Sohn Chae Hoon;Seol Woo-Seok;Shibanov Alexander A.;Pikalov Valery P.
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.9
    • /
    • pp.1821-1832
    • /
    • 2005
  • This study realizes the conceptual method to predict combustion instability in actual full-scale combustion chamber of rocket engines by experimental tests with model (sub-scale) chamber. The model chamber was designed based on the methodologies proposed in the previous work regarding geometrical dimensions and operating conditions, and hot-fire test procedures were followed to obtain stability boundaries. From the experimental tests, two instability regions are presented by the parameters of combustion-chamber pressure and mixture (oxidizer/fuel) ratio, which are customary for combustor designers. It is found that instability characteristics in the chamber with the adopted jet injectors can be explained by the correlation between the characteristic burning or mixing time and the characteristic acoustic time: In each instability region, dynamic behaviors of flames are investigated to verify the hydrodynamically-derived characteristic lengths of the jet injectors. Large-amplitude pressure oscillation observed in upper instability region is found to be generated by lifted-off flames.

The Complex Travelling Wave by Two Directional Differential Flow Induced Chemical Instability

  • 신수범;최상준;허도성;Kenneth Showalter
    • Bulletin of the Korean Chemical Society
    • /
    • v.20 no.4
    • /
    • pp.411-416
    • /
    • 1999
  • A new kind of differential flow induced chemical wave is introduced by theoretical calculation. A differential flow between the counter acting species of a dynamical activator-inhibitor system may destabilize its homogeneous reference state and cause the medium to self-organize into a pattern of travelling waves through the differential flow instability (DIFI). In a chemical system, also, the differential bulk flow may change the dynamics of the system, thus it has been refered to as the differential flow induced chemical instability (DIFICI). For DlFICI experiments, one directional flow has been commonly employed, resulting in periodic wave patterns generally. In this study, we considered two directional flow for the DIFICI wave by exchanging artificially the flow direction at some period.

Time-resolved Analysis for Electroconvective Instability under Potentiostatic Mode (일정 전위 모드에서의 전기와류 불안정성에 대한 시간-분해 해석)

  • Lee, Hyomin
    • Korean Chemical Engineering Research
    • /
    • v.58 no.2
    • /
    • pp.319-324
    • /
    • 2020
  • Electroconvective instability is a non-linear transport phenomenon which can be found in ion-selective transport system such as electrodialysis, Galvanic cell and electrolytic cell. The instability is triggered by the fluctuation of space charge layer in adjacent of ion-selective surface, leading to increase of mass transport rate. Thus, in the aspect of mass transport, the instability has an important meaning. Although recent experimental techniques have opened up an avenue to direct visualize the instability, fundamental investigations have been conducted in limited area due to several experimental limitations. In this work, the electroconvective instability under potentiostatic mode was solved by numerical method in order to demonstrate correlation between current-time curve and the instability behavior. By rigorous time-resolved analysis, the transition behaviors can be divided into three stages; formation of space charge layer - growth of electroconvective instability - steady state. Furthermore, scaling laws of transition time were numerically obtained according to applied voltage as well.

A Nonlinear Theory of Diffusion-Driven Instability in the Oregonator

  • Lee, Myung-Ho;Lee, Dong-Jae;Shin, Kook-Joe;Lee, Young-Hoon;Ko, Seuk-Beum
    • Bulletin of the Korean Chemical Society
    • /
    • v.8 no.3
    • /
    • pp.196-200
    • /
    • 1987
  • A nonlinear theory presented previously is applied to the Oregonator, which is a model for the Belousov-Zhabotinskii reaction, to study instability near the critical point driven by diffusions. The result shows that the theory may be applied to an actual system.

ON RIVLIN-ERICKSON ELASTICO-VISCOUS FLUID HEATED AND SOLUTED FROM BELOW IN THE PRESENCE OF COMPRESSIBILITY, ROTATION AND HALL CURRENTS

  • Gupta, Urvashi;Sharma, Gaurav
    • Journal of applied mathematics & informatics
    • /
    • v.25 no.1_2
    • /
    • pp.51-66
    • /
    • 2007
  • A layer of compressible, rotating, elastica-viscous fluid heated & soluted from below is considered in the presence of vertical magnetic field to include the effect of Hall currents. Dispersion relation governing the effect of viscoelasticity, salinity gradient, rotation, magnetic field and Hall currents is derived. For the case of stationary convection, the Rivlin-Erickson fluid behaves like an ordinary Newtonian fluid. The compressibility, stable solute gradient, rotation and magnetic field postpone the onset of thermosolutal instability whereas Hall currents are found to hasten the onset of thermosolutal instability in the absence of rotation. In the presence of rotation, Hall currents postpone/hasten the onset of instability depending upon the value of wavenumbers. Again, the dispersion relation is analyzed numerically & the results depicted graphically. The stable solute gradient and magnetic field (and corresponding Hall currents) introduce oscillatory modes in the system which were non-existent in their absence. The case of overstability is discussed & sufficient conditions for non-existence of overstability are derived.

Electroconvective Instability on Undulated Ion-selective Surface (파상형 이온 선택 표면상의 전기와류 불안정성)

  • Lee, Hyomin
    • Korean Chemical Engineering Research
    • /
    • v.57 no.5
    • /
    • pp.735-742
    • /
    • 2019
  • In this work, the electrokinetic interactions between the undulated structure of an ion-selective membrane and electroconvective instability has been studied using numerical analysis. Using finite element method, electric field-ionic species transport-flow field were analyzed by fully-coupled manner. Through the numerical study, the Dukhin's mode as the mechanism of undulated surface for the electroconvective instability were proven. The Dukhin's mode which competes with Rubinstein's mode has roles of (i) decreasing transition voltage to overlimiting regime and (ii) non-linearly increasing of overlimiting current. Also, (iii) the mixing efficiency is enhanced by removal mechanism of high-frequency Fourier mode of the electroconvective instability. Conclusively, the undulated ion-selective surface would provide energy-efficient mechanism for ion-selective transport systems such as electrodialysis, electrochemical battery, etc.

Turing, Turing Instability, Computational Biology and Combustion (Turing, Turing 불안정성 그리고 수리생물학과 연소)

  • Kim, J.S.
    • Journal of the Korean Society of Combustion
    • /
    • v.8 no.1
    • /
    • pp.46-56
    • /
    • 2003
  • The present paper is concerned with the development of the computational biology in the past half century and its relationship with combustion. The modem computational biology is considered to be initiated by the work of Alan Turing on the morphogenesis in 1952. This paper first touches the life and scientific achievement of Alan Turing and his theory on the morphogenesis based on the reactive-diffusive instability, called the Turing instability. The theory of Turing instability was later extended to the nonlinear realm of the reactive-diffusive systems, which is discussed in the framework of the excitable media by using the Oregonator model. Then, combustion analogies of the Turing instability and excitable media are discussed for the cellular instability, pattern forming combustion phenomena and flame edge. Finally, the recent efforts on numerical simulations of biological systems, employing the detailed bio-chemical knietic mechanism is discussed along with the possibility of applying the numerical combustion techniques to the computational cell biology.

  • PDF

Atlantoaxial instability with hydrocephalus in a dog

  • Jeong, Seong Mok;Choi, Hojung
    • Korean Journal of Veterinary Research
    • /
    • v.46 no.1
    • /
    • pp.67-70
    • /
    • 2006
  • An 8-month-old 3.15 kg female Cocker-spaniel with history of ataxia referred to the Veterianary Medical Teaching Hospital, Chungnam National University. There were no abnormalities in CBC and serum chemical analysis. Agenesis of dens was found on dorsoventral view in cervical radiography. Compressed cervical spinal cord and enlarged cerebral ventricle were observed in magnetic resonance imaging. It was diagnosed as atlantoaxial instability with hydrocephalus. For conservative therapy, neck brace was applied and diuretics and prednisolone were administered. The dog's ataxia became better gradually.