• 제목/요약/키워드: Chemical imaging

검색결과 365건 처리시간 0.028초

분자핵의학영상 개관 (General Perspectives for Molecular Nuclear Imaging)

  • 정준기
    • 대한핵의학회지
    • /
    • 제38권2호
    • /
    • pp.111-114
    • /
    • 2004
  • Molecular imaging provides a visualization of normal as well as abnormal cellular processes at a molecular or genetic level rather than at a anatomical level. Conventional medical imaging methods utilize the imaging signals produced by nonspecific physico-chemical interaction. However, molecular imaging methods utilize the imaging signals derived from specific cellular or molecular events. Because molecular and genetic changes precede anatomical change in the course of disease development, molecular imaging can detect early events in disease progression. in the near future, through molecular imaging we can understand basic mechanisms of disease, and diagnose earlier and, subsequently, treat earlier intractable diseases such as cancer, neuro-degenerative diseases, and immunologic disorders. In beginning period, nuclear medicine started as a molecular imaging, and has had a leading role in the field of molecular imaging. But recently molecular imaging has been rapidly developed. Besides nuclear imaging, molecular imaging methods such as optical imaging, magnetic resonance imaging are emerging. Each imaging modalities have their advantages and weaknesses. The opportunities from molecular imaging look bright. We should try nuclear medicine continues to have a leading role in molecular imaging.

화학적이동이 자기공명영상에 미치는 영향 (The Effect of Chemical Shift on MR Imaging)

  • 김경민;김영진
    • 한국의학물리학회지:의학물리
    • /
    • 제7권1호
    • /
    • pp.19-23
    • /
    • 1996
  • 정상조직과 지방조직의 화학적 결합의 차이는 화학적 이동 artifact를 발생시킨다. 이러한 화학적 이동으로 생긴 결과는 주로 공명신호 위치의 부정확으로 나타나지만 횡적완화시간의 변화도 일으키게 된다. 물분자 수소원자핵의 횡적완화시간 T$_2$ 과 지방분자 수소원자핵의 횡적완화시간 T$_{2}$$^{*}$ 를 신호대 잡음비, 신호응답도, 그리고 영상시간에 각각 넣어 비교해 보았다. 그 결과 신호대 잡음비와 신호응답도는 각각 약 5%와 8%가 감소하였고, 영상시간은 약 10% 가량 증가하였다. 따라서, 화학적 이동은 영상의 왜곡 외에도 영상과정의 효율을 저하시킴을 알았다.

  • PDF

Synthesis of a Novel Near-Infrared Fluorescent Dye: Applications for Fluorescence Imaging in Living Cells and Animals

  • Chen, Tongbin;Lai, Yijun;Huang, Suisheng
    • Bulletin of the Korean Chemical Society
    • /
    • 제34권10호
    • /
    • pp.2937-2941
    • /
    • 2013
  • Fluorescence imaging is considered as one of the most powerful techniques for monitoring biomolecule activities in living systems. Near-infrared (NIR) light is advantageous for minimum photodamage, deep tissue penetration, and minimum background autofluorescence interference. Herein, we have developed a new NIR fluorescent dye, namely, RB-1, based on the Rhodamine B scaffold. RB-1 exhibits excellent photophysical properties including large absorption extinction coefficients, high fluorescence quantum yields, and high photostability. In particular, RB-1 displays both absorption and emission in the NIR region of the "biological window" (650-900 nm) for imaging in biological samples. RB-1 shows absorption maximum at 614 nm (500-725 nm) and emission maximum at 712 nm (650-825 nm) in ethanol, which is superior to those of traditional rhodamine B in the selected spectral region. Furthermore, applications of RB-1 for fluorescence imaging in living cells and small animals were investigated using confocal fluorescence microscopy and in vivo imaging system with a high signal-to-noise ratio (SNR = 10.1).

First Simultaneous Visualization of SO2 and NO2 Plume Dispersions using Imaging Differential Optical Absorption Spectroscopy

  • Lee, Hanlim;Noh, Youngmin;Kwon, Soonchul;Hong, Hyunkee;Han, Kyung-Soo
    • Bulletin of the Korean Chemical Society
    • /
    • 제35권4호
    • /
    • pp.1191-1194
    • /
    • 2014
  • Imaging Differential Optical Absorption Spectroscopy (Imaging-DOAS) has been utilized in recent years to provide slant column density (SCD) distributions of several trace gas species in the plume. The present study introduces a new method using Imaging-DOAS data to determine two-dimensional plume structure from the plume emissions of power plant in conditions of negligible aerosol effects on radiative transfer within the plume. We demonstrates for the first time that two-dimensional distributions of sulfur dioxide ($SO_2$) and nitrogen dioxide ($NO_2$) in power plant emissions can be determined simultaneously in terms of SCD distribution. The $SO_2$ SCD values generally decreased with increasing distance from the stack and with distance from the center of the plume. Meanwhile, high $NO_2$ SCD was observed at locations several hundred meters away from the first stack due to the ratio change of NO to $NO_2$ in NOx concentration, attributed to the NO oxidation by $O_3$. The results of this study show the capability of the Imaging-DOAS technique as a tool to estimate plume dimensions in power plant emissions.

Graphene synthesis by chemical vapor deposition on Cu foil

  • Kim, Sung-Jin;Yoo, Kwon-Jae;Seo, E.K.;Boo, Doo-Wan;Hwang, Chan-Yong
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2011년도 제40회 동계학술대회 초록집
    • /
    • pp.351-351
    • /
    • 2011
  • Graphene has drawn great interests because of its distinctive band structure and physical properties[1]. A few of the practical applications envisioned for graphene include semiconductor applications, optoelectronics (sola cell, touch screens, liquid crystal displays), and graphene based batteries/super-capacitors [2-3]. Recent work has shown that excellent electronic properties are exhibited by large-scale ultrathin graphite films, grown by chemical vapor deposition on a polycrystalline metal and transferred to a device-compatible surface[4]. In this paper, we focussed our scope for the understanding the graphene growth at different conditions, which enables to control the growth towards the application aimed. The graphene was grown using chemical vapor deposition (CVD) with methane and hydrogen gas in vacuum furnace system. The grown graphene was characterized using a scanning electron microscope(SEM) and Raman spectroscopy. We changed the growth temperature from 900 to $1050^{\circ}C$ with various gas flow rate and composition rate. The growth condition for larger domain will be discussed.

  • PDF

Immunosensor for Detection of Escherichia coli O157:H7 Using Imaging Ellipsometry

  • Bae Young-Min;Park Kwang-Won;Oh Byung-Keun;Choi Jeong-Woo
    • Journal of Microbiology and Biotechnology
    • /
    • 제16권8호
    • /
    • pp.1169-1173
    • /
    • 2006
  • Imaging ellipsometry (IE) for detection of binding of Escherichia coli O157:H7 (E. coli O157:H7) to an immunosensor is reported. A protein G layer, chemically bound to a self-assembled layer of 11-mercaptoundecanoic acid (11-MUA), was adopted for immobilization of monoclonal antibody against E. coli O157:H7 (Mab). The immobilization of antibody was investigated using surface plasmon resonance. To fabricate antibody spots on a gold surface, protein G solution was spotted onto the gold surface modified with an 11-MUA layer, followed by immobilizing Mab on the protein G spot. Ellipsometric images of the protein G spot, the Mab spot, and Mab spots with binding of E. coli O157:H7 in various concentrations were acquired using the IE system. The change of mean optical intensity of the Mab spots in the ellipsometric images indicated that the lowest detection limit was $10^3$CFU/ml for E. coli O157:H7. Thus, IE can be applied to an immunosensor for detection of E. coli O157:H7 as a detection method with the advantages of allowing label-free detection, high sensitivity, and operational simplicity.

미세조류 이미지 품질 성능 향상을 위한 최적 전처리방법 선정 연구 (Evaluating optimal preprocessing method for separation of microalgae colonies into single cells for image quality)

  • 김상엽;맹승규
    • 상하수도학회지
    • /
    • 제38권2호
    • /
    • pp.109-117
    • /
    • 2024
  • In this study, various pre-treatment methods were evaluated for microalgae separation. These methods aimed to facilitate safe, rapid, and cost-effective online imaging for real-time observation and cell counting. As pre-treatment techniques, heating, chemical hydrolysis, heating combined with chemical hydrolysis, and sonication were employed. The effectiveness of these methods was evaluated in the context of online imaging quality through experimentation on cultivated microalgae (Chlorella vulgaris and Scenedesmus quadricauda). The chemical treatment method was found to be inappropriate for improving image acquisition. The heating pre-treatment method exhibited a drawback of prolonged cell dispersion time. Additionally, the heating combined with chemical hydrolysis method was confirmed to have the lowest dispersion effect for Chlorella vulgaris. Conversely, ultrasonication emerged as a promising technique for microalgae separation in terms of repeatability and reproducibility. This study suggests the potential for selecting optimal pre-treatment methods to effectively operate real-time online monitoring devices, paving the way for future research and applications in microalgae cultivation and imaging.

Chemical Imaging Analysis of the Micropatterns of Proteins and Cells Using Cluster Ion Beam-based Time-of-Flight Secondary Ion Mass Spectrometry and Principal Component Analysis

  • Shon, Hyun Kyong;Son, Jin Gyeong;Lee, Kyung-Bok;Kim, Jinmo;Kim, Myung Soo;Choi, Insung S.;Lee, Tae Geol
    • Bulletin of the Korean Chemical Society
    • /
    • 제34권3호
    • /
    • pp.815-819
    • /
    • 2013
  • Micropatterns of streptavidin and human epidermal carcinoma A431 cells were successfully imaged, as received and without any labeling, using cluster $Au_3{^+}$ ion beam-based time-of-flight secondary ion mass spectrometry (TOF-SIMS) together with a principal component analysis (PCA). Three different analysis ion beams ($Ga^+$, $Au^+$ and $Au_3{^+}$) were compared to obtain label-free TOF-SIMS chemical images of micropatterns of streptavidin, which were subsequently used for generating cell patterns. The image of the total positive ions obtained by the $Au_3{^+}$ primary ion beam corresponded to the actual image of micropatterns of streptavidin, whereas the total positive-ion images by $Ga^+$ or $Au^+$ primary ion beams did not. A PCA of the TOF-SIMS spectra was initially performed to identify characteristic secondary ions of streptavidin. Chemical images of each characteristic ion were reconstructed from the raw data and used in the second PCA run, which resulted in a contrasted - and corrected - image of the micropatterns of streptavidin by the $Ga^+$ and $Au^+$ ion beams. The findings herein suggest that using cluster-ion analysis beams and multivariate data analysis for TOF-SIMS chemical imaging would be an effectual method for producing label-free chemical images of micropatterns of biomolecules, including proteins and cells.