• Title/Summary/Keyword: Chemical extraction

Search Result 1,539, Processing Time 0.027 seconds

Analysis of Chemical Warfare Agents in Water Using Single-Drop Microextraction

  • Park, Yang-Gi;Kim, Sung-Ki;Choi, Ki-Hwan;Son, Byung-Hoon;Park, Ju-Sub;Kang, Hong-Ku
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.1
    • /
    • pp.49-52
    • /
    • 2009
  • Single-drop microextraction (SDME) is an extraction methodology where the drop plays an essential role as extracts. It was evaluated for the GC-MS determination of nerve agents, one class of the chemical warfare agents (CWAs). Since these nerve agents are highly toxic, it is important to detect the nerve agents in the environmental samples. Several affecting factors including extraction solvents, stirring rate, extraction time, and amounts of salt were optimized. The limit of detections (LODs) were 0.1 - 10 ng/mL and the relative standard deviations (RSDs%, n=5) were in the range of 6.3% to 9.0% for four nerve agents. Without pretreatment of the environmental samples, 5-103 fold enrichments and 48-100% recovery were accomplished. These results demonstrated the feasibility of this method for on-site and off-site analysis of water sample collected from suspicious CWAs site.

Chemical influences of the rhizomes of Atractylodes japonica, A. macrocephala, or A. chinensis on the extraction efficiencies of chemical compounds in the roots and rhizomes of Glycyrrhiza uralensis during hot-water extraction (열수추출 과정에서 삽주, 백출(큰꽃삽주), 북창출 배합이 감초 성분의 추출률에 미치는 영향)

  • Kim, Jung-Hoon
    • The Korea Journal of Herbology
    • /
    • v.34 no.5
    • /
    • pp.39-47
    • /
    • 2019
  • Objectives : When herbal medicines are extracted together, they may interact with each other, leading to change of chemical characteristics. This study aimed to evaluate the influence of Atractylodes rhizomes (Atractylodes japonica, A. macrocephala, and A. chinensis) on the chemical features of the roots and rhizomes of Glycyrrhiza uralensis, which is are commonly combined with herbal medicines in many herbal formulae, when they are co-decocted. Methods : Liquiritin apioside, liquiritin, ononin, and glycyrrhizin levels of G. uralensis in hot-water extracts prepared by the combination of Atractylodes rhizomes with various weight ratios (G. uralensis : Atractylodes rhizomes = 10:0, 10:5, 10:10, and 10:20) and extraction times (60, 90, and 120 min) were quantified using a HPLC-diode array detector and compared by statistical analysis. Results : The concentrations of liquiritin apioside, liquiritin, ononin, and glycyrrhizin from G. uralensis roots and rhizomes mostly reduced when co-extracted with Atractylodes rhizomes, and the addition of A. chinensis most reduced their contents between Atractylodes combination groups. A. japonica and A. macrocephala rhizomes also showed differences of liquiritin and glycyrrhizin levels at 10 g and 20 g groups of Atractylodes rhizomes. Extraction times also affected the concentrations of liquiritin, ononin, and glycyrrhizin mostly during 60 and 90 min. Conclusions : Atractylodes rhizomes might alter the chemical characteristics of G. uralensis when these herbs are co-decocted. This study provides the understanding of the chemical interactions of herbal medicines during the extraction in hot water.

Extraction/Separations of Cobalt by Supported Liquid Membrane: A Review

  • Swain, Basudev;Shim, Hyun-Woo;Lee, Chan Gi
    • Korean Chemical Engineering Research
    • /
    • v.57 no.3
    • /
    • pp.313-320
    • /
    • 2019
  • Extraction/separation of cobalt by supported liquid membrane has been reviewed. The review discusses various directions associated with the supported liquid membrane process, such as the kind of supported liquid membrane, the principle of supported liquid membrane, transport mechanism involved, and the advantages and disadvantages of the supported liquid. Finally, extraction and separation of cobalt from other metals using extractant through supported liquid membrane have been reviewed. Separation of cobalt using various reagents and cobalt recovery from scrap using commercial extractant can be a potential perspective from the application of supported liquid membrane application.

Extraction of Carbohydrates and Minerals from Laminaria Using Organic Acid (다시마 뿌리로부터 유기산을 이용한 다당과 미네랄 추출)

  • Chun, Ji Yeon;Han, Cha Seong;Lee, Jung Shik;Kim, Young Suk;Park, Kwon Pil
    • Korean Chemical Engineering Research
    • /
    • v.50 no.2
    • /
    • pp.238-243
    • /
    • 2012
  • Laminaria roots have not been practically used in Korea. In this study, the extraction process of carbohydrates and minerals from Laminaria roots was investigated and the properties of extracted components were measured. Hydrochloric acid generally used in carbohydrate extraction from seaweeds in order to obtain high extraction yield. But in this work, to utilize extracted components as a functional food material, organic acids such as citric acid were used. Organic acid as extraction solvent has low extraction yield compared to strong acids. Therefore optimum condition for maximum yield was investigated in carbohydrate extraction from Laminaria roots using organic acid. We measured the extraction yields of carbohydrate with variation of extraction temperature, extraction time, concentration of organic acid and particle size of samples. The extraction yield increased as the particle size decreased and temperature became high. The extraction yield was 19.0 wt% after 4.0 hours extraction with 0.2 wt% citric acid at $100^{\circ}C$. Potassium concentration was high compared other minerals in extraction solution, that is, the ratio of K/Na was about 3.0. Fucoidan from Laminaria roots had same carbohydrate composition and lower molecular weight compared that of Undaria pinnatifida.

Review on the Analytical Methods and Ambient Concentrations of Organic Nitrogenous Compounds in the Atmosphere (대기 유기질소화합물의 분석방법 및 농도)

  • Choi, Na Rae;Kim, Yong Pyo
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.34 no.1
    • /
    • pp.120-143
    • /
    • 2018
  • The analytical methods and their ambient levels of organic nitrogenous compounds such as nitrosamines, nitramines (nitroamines), imines, amides and nitro-polycyclic aromatic hydrocarbons (nitro-PAHs) in the atmosphere are summarized and discussed. Sampling for the analysis of organic nitrogenous compounds was mostly conducted using high volume air sampler. The direct liquid extraction (DLE) using sonification and the pressurized liquid extraction (PLE) using the accelerated solvent extraction (ASE) have been frequently employed for the extraction of organic nitrogenous compounds in the atmospheric samples. After extraction, clean-up via filtration and the solid phase extraction (SPE) and concentrations using nitrogen and rotary evaporator have been generally conducted but in some studies the clean-up and concentration steps have been omitted to prevent the loss of analyte and improve the recovery rate of the analytical procedure. Instrumental analysis was mainly carried out using gas chromatography (GC) or the high performance liquid chromatography (HPLC) coupled with the single quadrupole mass spectrometer or tandem mass spectrometer in the electron ionization (EI), positive chemical ionization (PCI) and negative chemical ionization (NCI) mode and analysis sensitivity of nitrosamines and nitramines were higher in NCI mode. Desirable sampling and analysis methods for analyzing particulate organic nitrogenous compounds are suggested.

Extraction of Hemicellulosic Sugar and Acetic Acid from Different Wood Species with Pressurized Dilute Acid Pretreatment

  • Um, Byung-Hwan;Park, Seong-Jik
    • Journal of the Korean Wood Science and Technology
    • /
    • v.42 no.2
    • /
    • pp.172-182
    • /
    • 2014
  • Extraction is a necessary element in the bioconversion of lignocellulosics to fuels and chemicals. Although various forms of chemical pretreatment of cellulosic materials have been proposed, their effectiveness varies depending on the treatment conditions and substrate. In this study, mixed hardwood (MH) and loblolly pine (LP) were pretreated with dilute acid in a 100 mL accelerated solvent extraction (ASE) at the predetermined optimal conditions: temperature: $170^{\circ}C$, acid concentration: 0.5% (w/v), and reaction time: 2~64 min. This method was highly effective for extracting the hemicellulose fraction. Total xmg (defined as the sum of xylose, mannose, and galactose) can be extracted from milled MH and LP through pressurized dilute acid treatment in maximum yields of 12.6 g/L and 15.3 g/L, respectively, representing 60.5% and 70.4% of the maximum possible yields, respectively. The crystallinity index increased upon pretreatment, reflecting the removal of the amorphous portion of biomass. The crystalline structure of the cellulose in the biomass, however, was not changed by the ASE extraction process.

Solution-processible corrugated structure and scattering layer for enhanced light extraction from organic light-emitting diodes

  • Hyun, Woo Jin;Im, Sang Hyuk;Park, O Ok;Chin, Byung Doo
    • Journal of Information Display
    • /
    • v.13 no.4
    • /
    • pp.151-157
    • /
    • 2012
  • A simple method of fabricating out-coupling structures was demonstrated via solution-processing to enhance light extraction from organic light-emitting diodes (OLEDs). Scattering layers were easily obtained by spin-coating an $SiO_2$ sol solution that contained $TiO_2$ particles. By introducing the scattering layer and the solution-processible corrugated structure as internal and external extraction layers, the OLEDs showed increased external quantum efficiency without a change in the electroluminescence spectrum compared to conventional devices. Using these solution-processible out-coupling structures, nearly all-solution-processed OLEDs with enhanced light extraction could be fabricated. The light extraction enhancement is attributed to the suppression by the out-coupling structures of the light-trapping that arose at the interface of the glass substrate and the air.

Tow-stage Extraction of Milk Fat by Supercritical Carbon Dioxide

  • Sangbin Lim;Jwa, Mi-Kyung;Kwak, Hae-Soo
    • Preventive Nutrition and Food Science
    • /
    • v.2 no.3
    • /
    • pp.202-206
    • /
    • 1997
  • To develop mil fat fractions with desirable physico-chemical properties, anhydrous milk fat (AMF) was fractionated by one- and two-stage extractions using supercritical $CO_2$(SC-$CO_2$). Tow-stage extraction of AMF was performed by first producing tow fractions, an extract and a residue at 4$0^{\circ}C$/241bar, which were subsequently used as the feed for an extraction at 6$0^{\circ}C$/241bar and 4$0^{\circ}C$/345bar, and separated into five and four fractions, respectively, based one extraction time. These fractions were quantified and analyzed for fatty acids and physico-chemical properties. SHort-chain (C4~C8) fatty acids in extract fractions from an extract were 200~150% compared with those of the original AF. Long-chain (C14~C18) fatty acids in extract fractions from a residue were 118~141%. The ratio of unsaturated fatty acids in the residue fraction was 131%. Melting point ranged from 22 to 43$^{\circ}C$, iodine value 21.8 to 36.9, and saponification value 255 to 221 in the extract and residue fractions. SC-$CO_2$ fractionation of AMF by two-stage extraction offers the possibility of developing ractions with discrete fatty acid compositions and physico-chemical properties such as melting point, iodine value and saponification value.

  • PDF

A Study on the Pharmaceutical and Chemical Characteristics of Natural Grape Extract (천연 포도 추출물의 약리 및 화학적 특성 연구)

  • Sung, Ki-Chun
    • Journal of the Korean Applied Science and Technology
    • /
    • v.26 no.3
    • /
    • pp.341-349
    • /
    • 2009
  • Natural grape extraction was extracted from grape component using diethyl ether as a solvent, and we tested various pharmaceutical and chemical characteristics of this extract. Characteristic experiments to use natural grape extract tested antimicrobial experiment using microbe in pharmaceutical material, and tested dye experiment using fiber in chemical material. From the result of characteristics experiment, some conclusions are obtained as follow. From the result of characteristics experiment, it obtained about 7.5%-grape extraction ratio as semi-solid state, and after dried in freezing from grape extract of semi-solid state, it obtained about 10%-grape extraction ratio as solid state of dark purple color. From result of antimicrobial experiment of grape extract, number of staphylococcus aureus (KCMC-01) and aspergillus niger (KCMC-02) in microbe decreased more and more according to time passage. This phenomenon showed that grape extract influences to antimicrobial effect. From the result of dye experiment of grape extract, it appeared in direction of dark purple color after dyed to use cotton and silk with fiber to control in pH 7.5. Specially the result which confirmed dye of fiber with optical electron microscope(OEM), we could know that it appears darker silk than cotton.

Chemical Composition of Green Teas According to Processing Methods and Extraction Conditions

  • Kim, Young-Kyung;Oh, Yoo-Jin;Chung, Jin-Oh;Lee, Sang-Jun;Kim, Kwang-Ok
    • Food Science and Biotechnology
    • /
    • v.18 no.5
    • /
    • pp.1212-1217
    • /
    • 2009
  • This study examined the influence of manufacturing processes and extraction conditions on the chemical compositions of green tea. Green tea samples grown in various areas (Korea, China, and Japan) and processed by 4 different methods (steaming, pan-firing, steaming and pan-firing, and heavy roasting after steaming and pan-firing) were collected for study. The chemical compositions of the green tea extracts and infusions were different according to their processing methods and extraction conditions, including catechins, caffeine, and free amino acids contents. In all samples analyzed, (-)-epigallocatechin gallate (EGCG), (-)-epigallocatechin (EGC), and theanine were determined as the major catechins and free amino acid, respectively. Studies of samples grown in the same area (Jeju; Korea) showed that there were significant differences in the concentrations of catechins and caffeine in extract and infusion according to the processing methods. These results indicate that processing methods influenced the chemical compositions of the green tea extracts and infusions.