• 제목/요약/키워드: Chemical etching

검색결과 925건 처리시간 0.03초

Poly-Si Cell with Preferential Grain Boundary Etching and ITO Electrode

  • Lim, D.G.;Lee, S.E.;Park, S.H.;Yi, J.
    • 태양에너지
    • /
    • 제19권3호
    • /
    • pp.125-131
    • /
    • 1999
  • This paper deals with a novel structure of poly-Si solar cell. A grain boundary(GB) of poly-Si acts as potential barrier and recombination center for photo-generated carriers. To reduce unwanted side effects at the GB of poly-Si, we employed physical GB removal of poly-Si using chemical solutions. Various chemical etchants such as Sirtl, Yang, Secco, and Schimmel were investigated for the preferential GB etching. Etch depth about 10 ${\mu}m$ was achieved by a Schimmel etchant. After a chemical etching of poly-Si, we used $POCl_3$ for emitter junction formation. This paper used an easy method of top electrode formation using a RF sputter grown ITO film. ITO films with thickness of 300 nm showed resistivity of $1.26{\times}10^{-4}{\Omega}-cm$ and overall transmittance above 80%. Using a preferential GB etching and ITO top electrode, we developed a new fabrication procedure of poly-Si solar cells. Employing optimized process conditions, we were able to achieve conversion efficiency as high as 16.6% at an input power of 20 $mW/cm^2$. This paper investigates the effects of process parameters: etching conditions, ITO deposition factors, and emitter doping densities in a poly-Si cell fabrication procedure.

  • PDF

Formation of Barrier ribs for PDP by Water Jet Etching of Green Tape

  • Cho, Yu-Jeong;Kim, Yong-Seog
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2003년도 International Meeting on Information Display
    • /
    • pp.784-787
    • /
    • 2003
  • In this study, water jet etching of aqueous green tape was attempted for processing barrier rib of plasma display panel. This process combines 1) chemical etching between water and aqueous based binder in the tape and 2) mechanical erosion by water jet. Effects of etching parameters such as pressure, temperature and aqueous binder content on the morphology of barrier ribs formed were investigated. The results demonstrated a possibility of processing barrier ribs by water jet etching.

  • PDF

Sputter etching에 의한 양모, 견직물의 농색효과 (Effects of Color Depth on Wool and Silk Fabrics Treated Sputter Etching)

  • 조환;구강
    • 한국염색가공학회지
    • /
    • 제6권3호
    • /
    • pp.44-51
    • /
    • 1994
  • Wool and silk fabrics dyed with C.l. Acid Black 155 were subjected to sputter etching and exposed to a low temperature argon plasma. Color depth of shade of the fabrics increased considerably, but sputter etching was more effectively than argon low temperature plasma treatment. And measured for any significant chemical modification by ESCA (XPS). Sputter etching and argon low temperature plasma treatments incorporated oxygen atoms into the surface.

  • PDF

ZnSe 단결정 성장과 결정결함 (Growth and defects of ZnSe crystal)

  • 이성국;박성수;김준홍;한재용;이상학
    • 한국결정성장학회지
    • /
    • 제7권1호
    • /
    • pp.76-80
    • /
    • 1997
  • 직경 55 mm의 ZnSe 단결정을 수소분위기에서 seeded chemical vapor transport법에 의해 성장하였고, 성장 parameter들이 결정 결함에 미치는 영향을 조사하였다. Chemical etching에 의한 EPD 측정, X-ray rocking curve 측정, photolumlnescence 측정으로 성장된 단결정의 특성을 평가하였다.

  • PDF

후면식각이 결정질 실리콘 태양전지에 미치는 영향에 관한 연구 (The effect of rear side etching for crystalline Si solar cells)

  • 신정현;김선희;이홍재;김범성;이돈희
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2010년도 춘계학술대회 초록집
    • /
    • pp.72.2-72.2
    • /
    • 2010
  • Nowadays, the crystalline Si Solar cell are expected for economical renewable energy source. The cost of the crystalline Si solar cell are decreasing by improvement of its efficiency and decrease of the cost of the raw Si wafers for Solar cells. This Si wafer based crystalline Si solar cell is the verified technology from several decade of its history. Now, I will introduce one method that can be upgrade the efficiency by using simple and economical method. The name of this method is Rear Side Etching(RSE). The purpose of rear side etching is the elimination of n+ layer of rear side and increase of the flatness. The effects of rear side etching are the improvement of Voc and increase of efficiency by reducement series resistance and forming of uniform BSF. The experimental procedure for rear side etching is very simple. After anti-reflection coating on solar cell wafer, Solar cell wafer is etched by the etching chemical that react with only rear side not front side. This special chemical is no harmful to anti-reflection coating layer. It can only etched rear side of solar cell wafer. We can use etching image by optical microscope, minority carrier life time by WCT 120, SiNx thickness and refractive index by ellipsometer, cell efficiency for the RSE effect measurement. The key point of rear side etching is development of etching process condition that react with only rear side. If we can control this factor, we can achieve increase of solar cell efficiency very economically without new device.

  • PDF

DHF를 적용한 웨이퍼의 층간 절연막 평탄화에 관한 연구 (A Study on ILD(Interlayer Dielectric) Planarization of Wafer by DHF)

  • 김도윤;김형재;정해도;이은상
    • 한국정밀공학회지
    • /
    • 제19권5호
    • /
    • pp.149-158
    • /
    • 2002
  • Recently, the minimum line width shows a tendency to decrease and the multi-level increases in semiconductor. Therefore, a planarization technique is needed and chemical mechanical polishing(CMP) is considered as one of the most suitable process. CMP accomplishes a high polishing performance and a global planarization of high quality. However there are several defects in CMF, such as micro-scratches, abrasive contaminations and non-uniformity of polished wafer edges. Wet etching process including spin-etching can eliminate the defects of CMP. It uses abrasive-free chemical solution instead of slurry. On this study, ILD(Interlayer-Dielectric) was removed by CMP and wet etching process using DHF(Diluted HF) in order to investigate the possibility of planrization by wet etching mechanism. In the thin film wafer, the results were evaluated from the viewpoint of material removal rate(MRR) and within wafer non-uniformity(WIWNU). And the pattern step heights were also compared for the purpose of planarity characterization of the patterned wafer. Moreover, Chemical polishing process which is the wet etching process with mechanical energy was introduced and evaluated for examining the characteristics of planarization.

Glass ionomer cement 표면의 산부식 효과에 관한 연구 (THE EFFECT OF ACID ETCHING ON GLASS IONOMER CEMENT SURFACES)

  • 한승원;박상진;민병순;최호영;최기운
    • Restorative Dentistry and Endodontics
    • /
    • 제18권1호
    • /
    • pp.1-26
    • /
    • 1993
  • The purpose of this study was to investigate the effect of acid etching on the surface appearance and fracture toughness of five glass ionomer cements. Five kinds of commercially available glass ionomer cements including chemical curing filling type, chemical curing lining type, chemical curing metal reinforced type, light curing tilling type and light curing lining type were used for this study. The specimens for SEM study were fabricated by treating each glass ionomer cement with either visible light curing or self curing after being inserted into a rubber mold (diameter 4mm, depth 1mm). Some of the specimens were etched with 37% phosphoric acid for 0, 15, 30, 60, go seconds, at 5 minutes, 1 hour and 1 day after mixing of powder and liquid. Unetched ones comprised the control group and the others were the experimental groups. The surface texture was examined by using scanning electron microscope at 20 kV. (S-2300, Hitachi Co., Japan). The specimens for fracture toughness were fabricated by curing of each glass ionomer cement previously inserted into a metal mold for the single edge notch specimen according to the ASTME399. They were subjected to a three-point bend test after etching for 0, 30, 60, and 90 seconds at 5 minutes-, 1 hour-and 1 day-lapse after the fabrication of the specimens. The plane strain fracture toughness ($K_{IC}$) was determined by three-point bend test which was conducted with cross-head speed of 0.5 mm/min using Instron universal testing machine (Model No. 1122) following seven days storage of the etched specimens under $37^{\circ}C$, 100% humidity condition. Following conclusions were drawn. 1. In unetched control group, crack was present, but the surface was generally smooth. 2. Deterioration of the surface appearance such as serious dissolving of gel matrix and loss of glass particles occured as the etching time was increased beyond 15 s following Immediate etching of chemical curing type of glass ionomer cements. 3. Etching after 1 h, and 1 d reduced surface damage, 15 s, and 30s etch gave rough surface appearance without loss of glass particle of chemical curing type of glass ionomer cements. 4. Light curing type glass ionomer cement was etched by acid, but there was no difference in surface appearances according to various waiting periods. 5. It was found that the value of plane stram fracture toughness of glass ionomer cements was highest in the light curing filling type as $1.79\;MNm^{-1.5}$ followed by the light curing lining type, chemical curing metal reinforced type, chemical curing filling type and chemical curing lining type. 6. The value of plane stram fracture toughness of the chemical curing lining type glass ionomer cement etched after 5 minutes was lower than those of the cement etched after 1 hour or day or unetched (P < 0.05). 7. Light curing glass ionomer cement showed Irregular fractured surface and chemical curing cement showed smooth fractured surface.

  • PDF

화학적 습식 에칭을 통한 AlN와 GaN의 결함 및 표면 특성 분석 (Investigation of defects and surface polarity in AlN and GaN using wet chemical etching technique)

  • 홍윤표;박재화;박철우;김현미;오동근;최봉근;이성국;심광보
    • 한국결정성장학회지
    • /
    • 제24권5호
    • /
    • pp.196-201
    • /
    • 2014
  • 화학적 습식 에칭을 통해 AlN와 GaN의 결함 및 표면 특성을 분석했다. 화학적 습식 에칭은 단결정의 결함을 선택적으로 에칭하기 때문에 결정의 품질을 평가하는 좋은 방법으로 주목 받고 있다. AlN와 GaN의 단결정은 NaOH/KOH 용융액을 이용하여 에칭을 했으며, 에칭 후 표면 특성을 알아보기 위해 주사전자현미경(SEM)과 원자힘 현미경(AFM)을 촬영했다. 에치 핏의 깊이를 측정하여 표면에 따른 에칭 속도를 계산했다. 그 결과 AlN와 GaN 표면에는 두 개의 다른 형태에 에치 핏이 형성 되었다. (0001)면의 metal-face(Al, Ga)는 육각 추를 뒤집어 놓은 형태를 갖는 반면 N-face는 육각형 형태의 소구 모양(hillock structure)을 하고 있었다. 에칭 속도는 N-face가 metal-face(Al, Ga)보다 각 각 약 109배(AlN)와 5배 정도 빨랐다. 에칭이 진행되는 동안 에치 핏은 일정한 크기로 증가하다 서로 이웃한 에치 핏들과 합쳐지는 것으로 보여졌다. 또한 AlN와 GaN의 에칭 공정을 화학적 메커니즘을 통해 알아 보았는데, 수산화 이온($OH^-$)과 질소의 dangling bond에 영향을 받아 metal-face(Al, Ga)와 N-face가 선택적으로 에칭되는 것으로 추론되었다.

Structure and Magnetic Properties of a Fe73.5Si13.5B9Nb3Cu1 Alloy Nanopowder Fabricated by a Chemical Etching Method and Milling Procedure

  • Hong, Seong-Min;Kim, Jeong-Gon;Kim, Cheol-Gi
    • Journal of Magnetics
    • /
    • 제14권2호
    • /
    • pp.71-74
    • /
    • 2009
  • The magnetic and structural properties of FINEMET (the Hitachi product name of the Fe-Si-B-Nb-Cu alloy) nanopowder with a composition of $Fe_{73.5}Si_{13.5}B_9Nb_3Cu_1$ atomic percent were investigated after annealing, chemical etching, and mechanical milling. The primary and secondary crystallization temperatures were 523 and $550^{\circ}C$, respectively. The grain size of the particles was adjusted by annealing time. Optimally annealed particles exhibited a homogenous microstructure composed of nanometer-sized crystalline grains. The grain boundary of the annealed particles was etched preferentially by chemical etching. Chemically etched particles were broken at the grain boundary by high-energy ball milling. As a result, a nanometer-sized FINEMET powder with a uniform size of crystalline grains was fabricated.

High density plasma etching of CoFeB and IrMn magnetic films with Ti hard mask

  • Xiao, Y.B.;Kim, E.H.;Kong, S.M.;Chung, C.W.
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2009년도 제38회 동계학술대회 초록집
    • /
    • pp.233-233
    • /
    • 2010
  • Magnetic random access memory (MRAM), based on magnetic tunnel junction (MTJ) and CMOS, is a prominent candidate among prospective semiconductor memories because it can provide nonvolatility, fast access time, unlimited read/write endurance, low operating voltage and high storage density. The etching of MTJ stack with good properties is one of a key process for the realization of high density MRAM. In order to achieve high quality MTJ stack, the use of CoFeB and IrMn magnetic films as free layers was proposed. In this study, inductively coupled plasma reactive ion etching of CoFeB and IrMn thin films masked with Ti hard mask was investigated in a $Cl_2$/Ar gas mix. The etch rate of CoFeB and IrMn films were examined on varying $Cl_2$ gas concentration. As the $Cl_2$ gas increased, the etch rate monotonously decreased. The effective of etch parameters including coil rf power, dc-bais voltage, and gas pressure on the etch profile of CoFeB and IrMn thin film was explored, At high coil rf power, high dc-bais voltage, low gas pressure, the etching of CoFeB and IrMn displayed better etch profiles. Finally, the clean and vertical etch sidewall of CoFeB and IrMn free layers can be achieved by means of thin Ti hard mask in a $Cl_2$/Ar plasma at the optimized condition.

  • PDF