• Title/Summary/Keyword: Chemical durability

Search Result 758, Processing Time 0.032 seconds

Development of Highly Durable Retroreflective Coating with Gravure Chemical Printing (그라비아 케미칼 프린팅 기술을 이용한 고내구성 재귀반사 코팅 직물 제조연구)

  • Sung Yong Yang;Bo Min Kim;Hyeji Park;Gyu Hwan Kim;Jaehyeung Park
    • Textile Coloration and Finishing
    • /
    • v.35 no.2
    • /
    • pp.98-106
    • /
    • 2023
  • The recent surge in night walkers and pedestrian traffic accidents has led to an increased interest in retro-reflection-based products, leading to several studies on retro-reflection. Nonetheless, achieving high durability and dispersibility of retro-reflective glass beads in viscous polyurethane coating resin remains challenging. To address this issue, this study conduct to functionalize the surface of glass beads for covalent conjugation to coating resin to enhance their dispersibility and durability in the coating resin. The study evaluated the dispersibility, chemical composition, and retro-reflection properties of the functionalized glass beads and coating resin. The results showed that the functionalized glass beads conjugated to the polyurethane coating resin and exhibited excellent dispersibility, high durability, and maintained retro-reflection efficiency.

Effect of Pt-Co/C Cathode Catalyst on Electrochemical Durability of Membrane in PEMFC (PEMFC에서 Pt-Co/C Cathode 촉매가 고분자막의 전기화학적 내구성에 미치는 영향)

  • Sohyeong Oh;Dong Geun Yoo;Myoung Hwan Kim;Ji Young Park;Kwonpil Park
    • Korean Chemical Engineering Research
    • /
    • v.61 no.2
    • /
    • pp.189-195
    • /
    • 2023
  • As a PEMFC (Polymer Exchange Membrane Fuel Cell) cathode catalyst, Pt-Co/C has recently been widely used because of its improved durability. In a fuel cell, electrodes and electrolytes have a close influence on each other in terms of performance and durability. The effect on the electrochemical durability of the electrolyte membrane when Pt-Co/C was replaced in the Pt/C electrode catalyst was studied. The durability of Pt-Co/C MEA (Membrane Electrode Assembly) was higher than that of Pt/C MEA in the electrochemical accelerated degradation process of PEMFC membrane. As a result of analyzing the FER (Fluorine Emission Rate) and hydrogen permeability, it was shown that the degradation rate of the membrane of Pt-Co/C MEA was lower than that of Pt/C MEA. In the OCV (Open Circuit Voltage) holding process, the rate of decrease of the active area of the Pt-Co/C electrode was lower than that of the Pt/C electrode, and the amount of Pt deposited on the membrane was smaller in Pt-Co/C MEA than in Pt/C MEA. Pt inside the polymer membrane deteriorates the membrane by generating radicals, so the degradation rate of the membrane of Pt/C MEA with a high Pt deposition rate was higher than Pt-Co/C MEA. When the Pt-Co/C catalyst was used, the electrode durability was improved, and the amount of Pt deposited on the membrane was also reduced, thereby improving the electrochemical durability of the membrane.

Experimental Study on Correlation Analysis of Air-void, Air-spacing factor and Long-term Durability for Roller-compacted Concrete pavement (롤러 전압 콘크리트 포장의 공기량 및 기포간격계수와 장기 내구성의 상관관계 분석을 위한 실험적 연구)

  • Lee, Jun Hee;Lee, Seung Woo
    • International Journal of Highway Engineering
    • /
    • v.18 no.1
    • /
    • pp.63-72
    • /
    • 2016
  • PURPOSES : The use of roller-compacted concrete pavement (RCCP) is an environmentally friendly method of construction that utilizes the aggregate interlock effect by means of a hydration reaction and roller compacting, demonstrating a superb structural performance with a relatively small unit water content and unit cement content. However, even if an excellent structural performance was secured through a previous study, the verification research on the environmental load and long-term durability was conducted under unsatisfactory conditions. In order to secure longterm durability, the construction of an appropriate internal air-void structure is required. In this study, a method of improving the long-term durability of RCCP will be suggested by analyzing the internal air-void structure and relevant durability of roller-compacted concrete. METHODS : The method of improving the long-term durability involves measurements of the air content, air voids, and air-spacing factor in RCCP that experiences a change in terms of the kind of air-entraining agent and chemical admixture proportions. This test should be conducted on the basis of test criteria such as ASTM C 457, 672, and KS F 2456. RESULTS : Freezing, thawing, and scaling resistance tests of roller compacted concrete without a chemical admixture showed that it was weak. However, as a result of conducting air entraining (AE) with an AE agent, a large amount of air was distributed with a range of 2~3%, and an air void spacing factor ranging from 200 to $300{\mu}m$ (close to $250{\mu}m$) coming from PCA was secured. Accordingly, the freezing and thawing resistance was improved, with a relative dynamic elastic modulus of more than 80%, and the scaling resistance was improved under the appropriate AE agent content rate. CONCLUSIONS : The long-term durability of RCCP has a direct relationship with the air-void spacing factor, and it can be secured only by ensuring the air void spacing factor through air entraining with the inclusion of an AE agent.

The Effect of Membrane Thickness on Durability and Performance of Proton Exchange Membrane Fuel Cell (고분자 전해질 연료전지의 전해질 막 두께가 내구성과 성능에 미치는 영향)

  • Hwang, Byungchan;Lee, Hyeri;Park, Kwonpil
    • Korean Chemical Engineering Research
    • /
    • v.55 no.4
    • /
    • pp.473-477
    • /
    • 2017
  • The polymer membrane of proton exchange membrane fuel cell (PEMFC) has a great influence on PEMFC performance and durability. In this study, hydrogen permeability, fluorine emission rate (FER), lifetime, and performance of Nafion membranes with different thicknesses were measured to investigate the effect of thickness of polymer membrane on performance and durability. The relationship between membrane thickness and lifetime was obtained from the relationships between hydrogen permeability and membrane thickness, hydrogen permeability and FER, FER and lifetime. As the membrane became thicker, the hydrogen permeability and FER decreased and the lifetime increased. On the other hand, the performance decreased with increasing membrane resistance. The membrane thickness range satisfying both performance and durability was 25 to $28{\mu}m$.

Effects of Changes in Accelerated Degradation Conditions for Catalyst Supports in Polymer Electrolyte Fuel Cell (고분자전해질 연료전지(PEMFC)에서 촉매 지지체 가속 열화 조건 변화의 영향)

  • Sohyeong Oh;Yuhan Han;Donggeun Yoo;Myoung Hwan Kim;Ji Young Park;Youngjin Choi;Kwonpil Park
    • Korean Chemical Engineering Research
    • /
    • v.62 no.1
    • /
    • pp.7-12
    • /
    • 2024
  • The durability of the catalyst support has a significant effect on the durability of proton exchange membrane fuel cells (PEMFC). The accelerated durability evaluation of the catalyst support is performed at a high voltage (1.0 to 1.5 V), and the catalyst and ionomer binder in the catalyst layer are also deteriorated, hindering the evaluation of the durability of the support. The existing protocol (DOE protocol) was improved to find conditions in which the support, which is a durability evaluation target, deteriorates further. A protocol (MDOE) was developed in which the relative humidity was lowered by 35% and the number of voltage changes was reduced. After repeating the 1.0 ↔ 1.5 V voltage change cycle, the catalyst mass activitiy (MA), electrochemical active area (ECSA), electrical double layer capacity (DLC), Pt dissolution and particle growth were analyzed. Reaching 40% reduction in mass activity, the MDOE protocol took only 500 cycles, reducing the number of voltage changes compared to the DOE method and increasing the degradation of the carbon support by 50% compared to the DOE protocol.

A Study on the Engineering Properties of Micro Fine Hybrid Silicate Based Grout (마이크로 복합실리카 그라우트의 공학적 특성에 관한 연구)

  • 천병식;김진춘;최영철;정종주;신상재;이홍재
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.11a
    • /
    • pp.63-70
    • /
    • 2000
  • In 1925, H.J. Joosten was the first in the world to use chemical injection grouts composed of sodium silicate and calcium chloride. This unique development prompted the introduction of other chemical grouting techniques. Among these chemical grouting techniques, sodium silicate based grout has been the most widely used in the world, but it has not been generally considered to be a permanent material. Therefore, studies to improve the weak points of sodium silicate based grout have been conducted, and new applications of grout were recently developed. We also developed the micro fine hybrid silicate grout of suspention type which properties are sepecialized as the high strength and durability, according to the reactant of special sodium silicate grout and the high strength hardener. As the results of this study we could derive the 2 times over high strength of Micro fine hybrid Silicate grouting method(MS method) more than that of the ordinary sodium silicate grout. And also we could confirm that the alkali leakage of micro fine hybrid silicate grout is less than that of ordinary sodium silicate grout. So we could get the high strength and durability of hybrid silicate grout are superior to those of ordinary sodium silicate grout.

  • PDF

Effects of Ru/C Catalyst on the CO Tolerance of Anode and Durability of Membrane in PEMFC (PEMFC에서 전극의 CO 내성 및 막 내구성에 미치는 Ru/C 촉매의 영향)

  • Sim, Woo-jong;Kim, Dong-whan;Choi, Seo-hee;Kim, Ki-joong;Ahn, Ho-Geun;Jung, Min-chul;Park, Kwonpil
    • Korean Chemical Engineering Research
    • /
    • v.46 no.2
    • /
    • pp.286-290
    • /
    • 2008
  • Small amounts of CO in reformate fuel gas effectively block platinum catalysts by strong adsorption on the platinum surface at the operation temperature of $60{\sim}80^{\circ}C$ in PEMFC. To oxidate CO, Ru/C layer (CO filter) was placed between Pt/C layer and GDL (gas diffusion layer) in this study. Ru/C filter provided good CO-tolerant PEMFC anode, but decreased the performance of unit cell about 10% at 0.6 V due to mass transfer resistance from Ru/C filter thickness and increase of charge transfer resistance. Membrane degradation is one of the most important factors limiting the life-time of PEMFCs. Membrane durability would be dependent on the electrode catalyst type. It seemed that Ru catalyst layer would shorten the life time of PEMFC as enhanced the fluoride emission rate of membrane in acceleration test.

Microstructural Observations on the deterioration of Concrete Structure for Wastewater Treatment Facilities Subjected to Chemical Attack (화학적 침식을 받은 하수처리시설 콘크리트 구조물의 성능저하에 대한 미세구조적 관찰)

  • Kim Seoung Soo;Lee Seung Tae;Park Kwang Pil;Bong Won Yong
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.11a
    • /
    • pp.547-550
    • /
    • 2005
  • Recently, there has been a intensive social interest for concrete structures with respect to durability by carbonation, chemical attack etc. Specially, the deterioration of concrete due to chemical attack in environments such as Wastewater Treatment Facilities is important factors degrading the durability of concrete structure. The purpose of this paper is to evaluate on deterioration of Wastewater Treatment Facilities concrete to chemical attack through instrumental analysis such as XRD, SEM and EDS. According to the results of this study. Wastewater Treatment Facilities concrete to chemical attack due to $So_{4}^{2-},\;Mg^{2+}$ ions founded out to appear deterioration materials peak : ettringite/thaumasite. gypsum and brucite peak.

  • PDF

The Durability of Elastin-Incorporated Collagen Matrix for Dermal Substitute in Vitro Condition (In vitro 환경에서 엘라스틴을 혼합한 콜라겐 진피 지지체의 내구성)

  • Lew, Dae Hyun;Hong, Jong Won;Tark, Kwan Chul
    • Archives of Plastic Surgery
    • /
    • v.35 no.1
    • /
    • pp.7-12
    • /
    • 2008
  • Purpose: Since the report of artificial dermis manufacturing method using collagen by Yannas in 1980, collagen has been effectively used as dermal substitute with its merits such as, lower antigeneicity, controllable biodegradation rate, and minimal inflammatory cytotoxic properties in the dermal tissue engineering field. However, weak mechanical durability was the main drawback of collagen dermal substitute. To improve its stability, mechanical or chemical cross-linking was used. Despite of such process, its clinical use was restricted due to weak durability. To improve the durability of collagen matrix, we designed elastin-incorporated collagen matrix and compared its durability with conventional collagen matrix. Methods: 15mm diameter with 4mm thick collagen dermal matrix was made according to Yannas protocol by mixing 0.5% bovine collagen and chondroitin-6-sulfate followed by degassing, freeze drying, dehydrodermal cross-linking and chemical cross-linking procedure. In elastin incorporated collagen matrix, same procedure was performed by mixing elastin to previous collagen matrix in 4:1 ratio(collagen 80% elastin 20%). In comparison of the two dermal matrix in vitro tests, matrix contracture rate, strain, tensile strength, was measured and stiffness was calculated from comparative analysis. Results: In terms of matrix contracture, the elastin-incorperated added collagen dermis matrix showed 1.2 times more contraction compared to conventional collagen matrix. However, tensile strength showed 1.6 times and stiffness showed 1.6 times increase in elastin-incorporated matrix. Conclusion: Elastin incorperated collagen matrix manufactured by our team showed increased durability due to improvement in tensile strength and stiffness compared to previous collagen matrix($Integra^{(R)}$).

Evaluation of Corrosion Resistance using Electro-chemical Methods for the High-Durability Concrete exposed to Marine Condition (해양환경에 노출된 고내구성 콘크리트의 전기화학적기법을 이용한 부식저항성 평가)

  • Yang, Eun-Ik;Kim, Myung-Yu;Lee, Dong-Gun;Han, Sang-Hun
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.19 no.4
    • /
    • pp.320-328
    • /
    • 2007
  • The durability of marine concrete structures is severely degraded by corrosion due to seawater attack and diffusion of chloride in concrete. The deduction of durability causes high repair cost for maintenance of marine concrete structure. So, the applicability of high-durable materials is investigated to improve the durability in marine concrete structures. For these, the characteristics of corrosion prevention of marine concrete structures mixed with the mineral admixtures(SF, FA and BFS), the modified steel(stainless and coating steel), and corrosion inhibitors are evaluated using electro-chemical methods. As a results of this study, it is quantified for the effect of promotion of durability by high-durability materials in marine concrete structures.