• Title/Summary/Keyword: Chemical disaster

Search Result 311, Processing Time 0.024 seconds

Numerical Simulation of Salinity Intrusion into Groundwater Near Estuary Barrage with Using OpenGeoSys (OpenGeoSys를 이용한 하굿둑 인근 지하수 내 염분 침투 수치모의)

  • Hyun Jung Lee;Seung Oh Lee;Seung Jin Maeng
    • Journal of Korean Society of Disaster and Security
    • /
    • v.16 no.4
    • /
    • pp.157-164
    • /
    • 2023
  • The estuary dam is a structure installed and operated in a closed state except when flood event occurs to prevent inland saltwater intrusion and secure freshwater supply. However, the closed state of dam leads to issues such as eutrophication, so it is necessary to examine the extent of saltwater intrusion resulting from the opening of sluice gates. Groundwater, due to its subsurface conditions and slow flow characteristics, is widely analyzed using numerical models. OpenGeoSys, an open-source software capable of simulating Thermal- Hydraulic- Mechanical- Chemical phenomena, was adopted for this study. Simulations were conducted assuming natural flow conditions without dam and operating considering busy farming season, mostly from March to September. Verification of the model through analytical solutions showed error of 3.7%, confirming that OpenGeoSys is capable of simulating saltwater intrusion for these cases. From results simulated for 10 years, considering for the busy farming season, resulted in about 46% reduction in saltwater intrusion length compared to natural flow conditions, approximately 74.36 m. It may be helpful to make choices to use groundwater as a water resource.

Health Damages and Lessons of the Use of Humidifier Disinfectants in Korea (가습기살균제 피해사건과 교훈)

  • Choi, Ye-Yong;Lim, Heung-Kyu;Lim, Sin-Ye;Paek, Do-Myung
    • Journal of Environmental Health Sciences
    • /
    • v.38 no.2
    • /
    • pp.166-174
    • /
    • 2012
  • Introduction: After 17 years since the first production of humidifier disinfectants in Korea, Korea Centers for Disease Control and Prevention (KCDC) announced that the odds ratio of lung injury related with humidifier disinfectant usage was 47.3 (95% confidence interval 6.0-369.7) according to a case-control study with 18 adult cases, including 8 pregnant women at a university hospital in Seoul. Results: From September 2011 to April 2012, one-hundred and seventy four victim cases have been reported to an environmental non-governmental group (NGO). We summarized timetable of humidifier disinfectants accidents, analyzed health outcomes (death, lung or lung and heart transplantation, pulmonary disease) of reported victims, and classified some information for humidifier disinfectants with health outcomes, and government action for this accident. Among the victims, number of death cases are 52 (30.0%), including 26 babies less than 3 years old. Sixty-nine victims come from twenty-seven family with 2 to 4 members per family. About twenty types of humidifier disinfectant products and about 600,000 product items a year have been sold. Fifty-two death cases used 7 different types of disinfectant products, including imported goods and some private brands of well-known supermarkets. KCDC confirmed inhalation toxicity of 6 products through an animal experimental test, and based on this observation recalled disinfectants containing PHMG (polyhexamethylene guanidine) and PGH (Oligo(2-(2-ethoxy)ethoxyethyl guanidinium chloride). Discussions: The use of these biocides involved highly fatal consequences among biologically vulnerable victims, such as pregnant women, several family member victims after semi-acute exposure. This is the first biocide disaster in Korea with non-specific targets, and unknown scale of victims, warranting concerns on use of biocides in the living environment. Conclusions: Special administrative agency for chemical safety and compensation act for environmental health victims are needed to prevent similar problems.

Study on Exposed Piping with High Risk of Fire (화재 위험성이 높은 노출배관 사용에 관한 연구)

  • Kim, Yeob-Rae;Baek, Dong-Hyun
    • Fire Science and Engineering
    • /
    • v.29 no.4
    • /
    • pp.61-66
    • /
    • 2015
  • PVC pipe has excellent corrosion resistance and chemical resistance and is broadly used. However there are no regulations regarding exposed piping material in buildings. There is growing concern about the vulnerability of piping to fires and generating toxic gas. Exposed piping should be made of incombustible materials to prevent spreading of toxic gas and to minimize damage to life and property in case of fire. Many big structures are being built, and concerns regarding damage by fire are continuously growing. In these circumstances, we should reinforce fire safety standards for buildings and heighten safety consciousness to become a well-developed country. For these reasons, we investigated the materials used for exposed piping and the standards of well-developed countries to enhance safety. We tried to figure out the alternatives by examining the actual conditions of each region's buildings. Based on the use of incombustible materials for exposed piping in each region, we tried to enhance the effectiveness for safety by suggesting revisions for related laws and regulations.

The Measurement and Prediction of Flash Point for Binary Mixtures of Methanol, Ethanol, 2-Propanol and 1-Butanol at 101.3 kPa (Methanol, Ethanol, 2-Propanol 그리고 1-Butanol 이성분 혼합계에 대한 101.3 kPa에서의 인화점 측정 및 예측)

  • Oh, In Seok;In, Se Jin
    • Fire Science and Engineering
    • /
    • v.29 no.5
    • /
    • pp.1-6
    • /
    • 2015
  • Flash point is one of the most important variables used to characterize fire and explosion hazard of liquids. The lower flash point data were measured for the binary systems {methanol + 1-butanol}, {ethanol + 1-butanol} and {2-propanol + 1-butanol} at 101.3 kPa. Experiments were performed according to the standard test method (ASTM D 3278) using a SETA closed cup flash point tester. The measured flash points were compared with the predicted values calculated using the following activity coefficient models: Wilson, Non-Random Two Liquid (NRTL), and UNIversal QUAsiChemical (UNIQUAC). The measured FP data agreed well with the predicted values of Raoult's law, Wilson, NRTL and UNIQUAC models. The average absolute deviation between the predicted and measured lower FP was less than 1.14 K.

Risk Assessment Program of underground buried Pipeline Development (지하매설배관의 위험성평가 프로그램 개발)

  • Kim Tae Wook;Sung Jun Sik;Cho Yong Hyun
    • Journal of the Korean Institute of Gas
    • /
    • v.4 no.2 s.10
    • /
    • pp.37-45
    • /
    • 2000
  • The underground buried pipelines of Natural gas are relatively safer than any other pipelines of chemical plants, because Natural gas is non-corrosive fluid. But Natural gas is supplied normally the downtown area. So, it may be a disaster because of corrosion which is caused interference facilities, environment and third party accident which is caused facilities construction. Especially, it is very difficult to find out and inspect damages of pipeline because of buried pipelines. Therefore this paper approached to select and manage risk region pipelines according to introduction of underground buried pipeline's risk concept. Risk was indicated three parts - corrosion factor, design and construction factor, maintence and management factor - in this paper, Therefore qualitive risk of pipelines showed score as quantitative number. Also it was thought to be helpful in confidence and safety management that the concept of key index and failure supplementation measures to cost introduces this program. We developed this risk assessment program using visual basic tool and interfaced GIS.

  • PDF

Fire Accident Analysis of Hazardous Materials Using Data Analytics (Data Analytics를 활용한 위험물 화재사고 분석)

  • Shin, Eun-Ji;Koh, Moon-Soo;Shin, Dongil
    • Journal of the Korean Institute of Gas
    • /
    • v.24 no.5
    • /
    • pp.47-55
    • /
    • 2020
  • Hazardous materials accidents are not limited to the leakage of the material, but if the early response is not appropriate, it can lead to a fire or an explosion, which increases the scale of the damage. However, as the 4th industrial revolution and the rise of the big data era are being discussed, systematic analysis of hazardous materials accidents based on new techniques has not been attempted, but simple statistics are being collected. In this study, we perform the systematic analysis, using machine learning, on the fire accident data for the past 11 years (2008 ~ 2018), accumulated by the National Fire Service. The analysis results are visualized and presented through text mining analysis, and the possibility of developing a damage-scale prediction model is explored by applying the regression analysis method, using the main factors present in the hazardous materials fire accident data.

Development of reference materials for cement paste

  • Lee, Dong Kyu;Choi, Myoung Sung
    • Advances in concrete construction
    • /
    • v.9 no.6
    • /
    • pp.547-556
    • /
    • 2020
  • This study aimed to develop reference materials (RMs) that are chemically stable and can simulate the flow characteristics of cement paste. To this end, the candidate components of RMs were selected considering the currently required properties of RMs. Limestone, slag, silica, and kaolin were selected as substitutes for cement, while glycerol and corn syrup were selected as matrix fluids. Moreover, distilled water was used for mixing. To select the combinations of materials that meet all the required properties of RMs, flow characteristics were first analyzed. The results revealed that silica and kaolin exhibited bilateral nonlinearity. When an analysis was conducted over time, slag exhibited chemical reactions, including strength development. Moreover, fungi were observed in all mixtures with corn syrup. On the other hand, the combination of limestone, glycerol, and water exhibited a performance that met all the required properties of RMs. Thus, limestone, glycerol, and water were selected as the components of the RMs. When the influence of each component of the RMs on flow characteristics was analyzed, it was found that limestone affects the yield value, while the ratio of water and glycerol affects the plastic viscosity. Based on this, it was possible to select the mixing ratios for the RMs that can simulate the flow characteristics of cement paste under each mixing ratio. This relationship was established as an equation, which was verified under various mixing ratios. Finally, when the flow characteristics were analyzed under various temperature conditions, cement paste and the RMs exhibited similar tendencies in terms of flow characteristics. This indicated that the combinations of the selected materials could be used as RMs that can simulate the flow characteristics of cement paste with constant quality under various mixing ratio conditions and construction environment conditions.

A study on Mechanical Properties of Acrylic-casein Hybrid Resins for Surface Protection (표면 보호용 수용성 Acrylic-casein Hybrid Resin의 합성 및 기계적 물성에 관한 연구)

  • Lee, Joo-Youb;Kim, Ki-Jun
    • Journal of the Korean Applied Science and Technology
    • /
    • v.29 no.4
    • /
    • pp.618-625
    • /
    • 2012
  • In this study, prepared synthesis waterborne acrylic resin and water soluble milk casein resin. And than extent of casein contents in acrylic resin. We measured property of these samples by Lamb leather which is coated by acrylic-casein resins. According to measure data for solvent resistance, WAR resin and Hybrid resins had good property. Among this result knew that increase of casein constant did not influence to big change of hybrid resin property. As test of tensile strength, WAR had lowest strength($1.399kg_f/mm^2$) and WAC-3 had highest strength($1.426kg_f/mm^2$). Also we knew that best property of abrasion was WAC-3(69.774 mg.loss). In elongation case, WAR had best property(820%) in this experiment.

Evaluation of Water Quality Prediction Models at Intake Station by Data Mining Techniques (데이터마이닝 기법을 적용한 취수원 수질예측모형 평가)

  • Kim, Ju-Hwan;Chae, Soo-Kwon;Kim, Byung-Sik
    • Journal of Environmental Impact Assessment
    • /
    • v.20 no.5
    • /
    • pp.705-716
    • /
    • 2011
  • For the efficient discovery of knowledge and information from the observed systems, data mining techniques can be an useful tool for the prediction of water quality at intake station in rivers. Deterioration of water quality can be caused at intake station in dry season due to insufficient flow. This demands additional outflow from dam since some extent of deterioration can be attenuated by dam reservoir operation to control outflow considering predicted water quality. A seasonal occurrence of high ammonia nitrogen ($NH_3$-N) concentrations has hampered chemical treatment processes of a water plant in Geum river. Monthly flow allocation from upstream dam is important for downstream $NH_3$-N control. In this study, prediction models of water quality based on multiple regression (MR), artificial neural network and data mining methods were developed to understand water quality variation and to support dam operations through providing predicted $NH_3$-N concentrations at intake station. The models were calibrated with eight years of monthly data and verified with another two years of independent data. In those models, the $NH_3$-N concentration for next time step is dependent on dam outflow, river water quality such as alkalinity, temperature, and $NH_3$-N of previous time step. The model performances are compared and evaluated by error analysis and statistical characteristics like correlation and determination coefficients between the observed and the predicted water quality. It is expected that these data mining techniques can present more efficient data-driven tools in modelling stage and it is found that those models can be applied well to predict water quality in stream river systems.

A Study on Engineering Characteristics of Geotechnical Material Using By-Product Lime and Pieces of Waste EPS Beads (석회부산물 및 폐 EPS beads를 활용한 지반재료의 공학적 특성에 관한 연구)

  • Bang, Yoon-Kyung;Park, Min-Yong;Yoon, Chang-Jin;Kim, Hong-Taek
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.2
    • /
    • pp.97-105
    • /
    • 2004
  • The purpose of this study is to provide the ways of recycling of by-product limes as lightweight fill, backfill materials, and lightweight blocks by performing experimental study. New lightweight fill materials and blocks were devised by mixing by-product lime, weathered granite soil, small pieces of waste EPS, and Portland cement. Physical, geotechnical, and environmental properties of the lightweight mixed soils and blocks were analysed by laboratory experiments for mixed samples manufactured with various mixing ratios. KMS tests were also performed to evaluate the concentration variation of the chemical components of the light weight blocks leachates. It is expected that this study will contribute to resolving the problem of by-product lime disposal as well as to recycling the by-product limes as fill materials and blocks.