• 제목/요약/키워드: Chemical decontamination process

검색결과 43건 처리시간 0.029초

침적식 화학적 제염 공정 시 원자로 냉각재 펌프용 스테인리스강의 안전성 평가 (Evaluation on Safety of Stainless Steels in Chemical Decontamination Process with Immersion Type of Reactor Coolant Pump for Nuclear Reactor)

  • 김성종;한민수;김기준;장석기
    • Corrosion Science and Technology
    • /
    • 제10권5호
    • /
    • pp.167-174
    • /
    • 2011
  • Due to commercialization of nuclear power, most countries have taken interest in decontamination process of nuclear power plant and tried to develop a optimum process. Because open literature of the decontamination process are rare, it is hard to obtain skills on decontamination of foreign country and it is necessarily to develop proper chemical decontamination process system in Korea. In this study, applicable possibility in chemical decontamination for reactor coolant pump (RCP) was investigated for the various stainless steels. The stainless steel (STS) 304 showed the best electrochemical properties for corrosion resistance and the lowest weight loss ratio in chemical decontamination process with immersion type than other materials. However, the pitting corrosion was generated in both STS 415 and STS 431 with the increasing numbers of cycle. The intergranular corrosion in STS 431 was sporadically observed. The sizes of their pitting corrosion also increased with increasing cycle numbers.

원자로 냉각재 펌프용 스테인리스강에 대한 화학적 제염 공정 개발(II) (Development of Chemical Decontamination Process of Stainless Steel for Reactor Coolant Pump(II))

  • 김성종;김정일;김기준
    • 한국표면공학회지
    • /
    • 제40권6호
    • /
    • pp.271-278
    • /
    • 2007
  • In this study, applicable possibility in chemical decontamination for reactor coolant pump(RCP) was investigated for the various stainless steels. The stainless steel(STS) 304 showed the best electrochemical properties for corrosion current density and the lowest weight loss ratio in chemical decontamination process model 3-3 than other materials. The weightloss quantity in chemical decontamination process model 3-3 presents the lowest value compare to the other chemical decontamination process model 1, 2, 3-1 and 3-2. In the case of SEM observation, the pitting corrosion was generated in both STS 415 and STS 431 with the increasing numbers of cycle. The intergranular corrosion in STS 431 was sporadically observed. The sizes of their pitting corrosion were also increased with increasing cycle numbers.

원자로 냉각재 펌프용 스테인리스강에 대한 화학적 제염 공정 개발 (Development of Chemical Decontamination Process of Stainless Steel for Reactor Coolant Pump)

  • 김성종;한민수;김정일;김기준
    • 한국표면공학회지
    • /
    • 제40권5호
    • /
    • pp.234-240
    • /
    • 2007
  • As a reactor coolant pump (RCP) is operated in the nuclear power system for a long time, so its surface is continuously contaminated by radioactive scales. In order to maintain for RCP internals, a special chemical decontamination process should be used to reduce the radiation from the RCP surface. In this study, applicable possibility in chemical decontamination for RCP was investigated for the various stainless steels. The stainless steel (STS) 304 showed the best electrochemical properties for corrosion resistance and the lowest weight loss ratio in chemical decontamination process model 3-1 than other materials. However, the pitting corrosion was generated in both STS 415 and STS 431 with the increasing numbers of cycle. The intergranular corrosion in STS 415 was sporadically observed. The sizes of their pitting corrosion were also increased with increasing cycle numbers.

Electrochemical corrosion study on base metals used in nuclear power plants in the HyBRID process for chemical decontamination

  • Kim, Sung-Wook;Park, Sang-Yoon;Roh, Chang-Hyun;Shim, Ji-Hyung;Kim, Sun-Byeong
    • Nuclear Engineering and Technology
    • /
    • 제54권6호
    • /
    • pp.2329-2333
    • /
    • 2022
  • Base metal corrosion forms a significant issue during the chemical decontamination of the primary coolant loop in nuclear power plants as it is directly related to the economic and safety viability of decommissioning. In this technical note, potentiodynamic evaluations of several base metals (304 stainless steel, SA106 Grade B carbon steel, and alloy 600) were performed to determine their corrosion behavior during the hydrazine (N2H4)-based reductive ion decontamination (HyBRID) process. The results suggested that N2H4 protected the surface of the base metals in the HyBRID solution, which is primarily composed of H2SO4. The corrosion resistance of the carbon steel was further improved through the addition of CuSO4 to the solution. The corrosion rate of carbon steel in the H2SO4-N2H4-CuSO4 solution was lower than that exhibited in an oxalic acid solution, a commonly used reaction medium during commercial decontamination processes. These results indicate the superiority of the HyBRID process with respect to the base metal stability.

계통 내 침적된 산화막 제거를 위한 과망간산/옥살산 기반의 화학제염 공정연구 (Study on Chemical Decontamination Process Based on Permanganic Acid-Oxalic Acid to Remove Oxide Layer Deposited in Primary System of Nuclear Power Plant)

  • 김초롱;김학수
    • 방사성폐기물학회지
    • /
    • 제17권1호
    • /
    • pp.15-28
    • /
    • 2019
  • 고리 1호기는 원전해체 계획에 따라 영구정지 이후 가능한 한 빠른 시일 내에 원자로냉각재계통의 화학제염을 수행할 계획으로, 계통제염 기술 확보를 위해 한수원에서는 2014년부터 '원전 해체설계를 위한 냉각재계통 및 기기제염 상용기술개발' 연구과제를 통해 화학제염기술을 개발하고 있다. 본 연구를 위해 Lab. 규모 계통제염 공정장치를 제작하였으며, 계통제염 대상의 주요재료인 STS304, 316, 410, Alloy600, SA508을 사용하여 화학제염 공정실험을 수행하였다. 화학제염 공정실험의 목적은 산화-환원공정의 최적시간, 최적제염제 및 공정횟수를 도출하기 위함이다. 화학제염 공정실험은 과망간산-옥살산 기반의 단위공정 및 연속공정 실험, 과망간산+질산-옥살산 기반의 연속공정 실험으로 나누어 수행하였다. 그 결과 단위공정실험을 통해 최적공정 시간인 산화공정 5시간, 환원공정 4시간을 도출하였으며, 연속공정실험을 통해 최적제염제와 공정횟수를 도출하였다. 최적제염제는 산화제의 경우 $200mg{\cdot}L^{-1}$ 과망간산 + $200mg{\cdot}L^{-1}$ 질산이고, 환원제는 $2000mg{\cdot}L^{-1}$ 옥살산이며, 공정횟수는 STS304와 SA508의 경우 2 cycle, Alloy600의 경우 3 cycle 이상 수행하는 것이 적절할 것으로 평가되었다.

화학제염공정에서 환원공정조건에 따른 Inconel 600의 부식손상 특성 (Corrosion Damage Characteristics of Inconel 600 with Reduction Conditions in Chemical Decontamination Process)

  • 한민수;정광후;양예진;박일초;이정형;김성종
    • 한국표면공학회지
    • /
    • 제50권5호
    • /
    • pp.332-338
    • /
    • 2017
  • In this study, we evaluated tendency and degree of corrosion damages of Inconel 600 after chemical decontamination treatments under three different conditions. In the decontamination processes, the oxidation and reduction were performed as one cycle. Each process was continued up to 5 cycles. Characteristics of corrosion under decontamination processes were evaluated by Tafel analysis and weight loss. Characteristics of surface damage were observed by scanning electron microscope(SEM) and three-dimensional(3D) microscope. As the cycle proceeded, weight loss and corrosion current density increased. Intergranular corrosion damage occurred on the surface of the materials. The result revealed that the surface of Inconel 600 was attacked by the strong acid solution under all chemical decontamination processes, but the degree of the corrosion damage was different depending on the processes.

Flow Characteristics Analysis for the Chemical Decontamination of the Kori-1 Nuclear Power Plant

  • Cho, Seo-Yeon;Kim, ByongSup;Bang, Youngsuk;Kim, KeonYeop
    • 방사성폐기물학회지
    • /
    • 제19권1호
    • /
    • pp.51-58
    • /
    • 2021
  • Chemical decontamination of primary systems in a nuclear power plant (NPP) prior to commencing the main decommissioning activities is required to reduce radiation exposure during its process. The entire process is repeated until the desired decontamination factor is obtained. To achieve improved decontamination factors over a shorter time with fewer cycles, the appropriate flow characteristics are required. In addition, to prepare an operating procedure that is adaptable to various conditions and situations, the transient analysis results would be required for operator action and system impact assessment. In this study, the flow characteristics in the steady-state and transient conditions for the chemical decontamination operations of the Kori-1 NPP were analyzed and compared via the MARS-KS code simulation. Loss of residual heat removal (RHR) and steam generator tube rupture (SGTR) simulations were conducted for the postulated abnormal events. Loss of RHR results showed the reactor coolant system (RCS) temperature increase, which can damage the reactor coolant pump (RCP)s by its cavitation. The SGTR results indicated a void formation in the RCS interior by the decrease in pressurizer (PZR) pressure, which can cause surface exposure and tripping of the RCPs unless proper actions are taken before the required pressure limit is achieved.

化學除染에 의한 逆止밸브의 再使用 (Recycling of Safety Check Valves Contaminated with Radioactivity by Chemical Decontamination)

  • 정종헌;최왕규;원휘준;심준보;오원진
    • 자원리싸이클링
    • /
    • 제10권1호
    • /
    • pp.56-65
    • /
    • 2001
  • 원전 안전주입계통 역지밸브의 유지보수 작업과 관련하여 작업자 방사성 피폭저감과 고가 부품의 재사용을 위해 방사능으로 오염된 이들 밸브를 화학제염법으로 제염을 수행하였다. 화학제염 후 역지밸브 내부 틈새에 잔류한 미세 고형입자를 제거하기 위해 초음파세척을 병행하였다. 역지밸브 disk arm holder를 사용한 사전 시험결과를 토대로 제염공정과 제염시약량을 결정하였으며 제염에 의한 부식산화물 용해거동, 방사능 제거거동과 재료부식거동을 조사하였다. 화학제염에 이은 초음파 적용결과, 초기 방사능의 93-95%가 제거되었으며 역지밸브 구성재질인 Type 304 stainless steel, Inconel-600 및 Stellite-6 에 대한 일반부식량은 각각 $ 2.1$\times10^{-2}$ , $6.0\times10^{-2}$ 및 1.7 mil 로써 일반부식 허용한계치의 3.3%, 24.0 % 및 2.7% 수준을 나타내어 제염효과와 재질건전성 면에서 효과적이었다.

  • PDF

Evaluation of dissolution characteristics of magnetite in an inorganic acidic solution for the PHWR system decontamination

  • Ayantika Banerjee ;Wangkyu Choi ;Byung-Seon Choi ;Sangyoon Park;Seon-Byeong Kim
    • Nuclear Engineering and Technology
    • /
    • 제55권5호
    • /
    • pp.1892-1900
    • /
    • 2023
  • A protective oxide layer forms on the material surfaces of a Nuclear Power Plant during operation due to high temperature. These oxides can host radionuclides, the activated corrosion products of fission products, resulting in decommissioning workers' exposure. These deposited oxides are iron oxides such as Fe3O4, Fe2O3 and mixed ferrites such as nickel ferrites, chromium ferrites, and cobalt ferrites. Developing a new chemical decontamination technology for domestic CANDU-type reactors is challenging due to variations in oxide compositions from different structural materials in a Pressurized Water Reactor (PWR) system. The Korea Atomic Energy Research Institute (KAERI) has already developed a chemical decontamination process for PWRs called 'HyBRID' (Hydrazine-Based Reductive metal Ion Decontamination) that does not use organic acids or organic chelating agents at all. As the first step to developing a new chemical decontamination technology for the Pressurized Heavy Water Reactor (PHWR) system, we investigated magnetite dissolution behaviors in various HyBRID inorganic acidic solutions to assess their applicability to the PHWR reactor system, which forms a thicker oxide film.

A multi-criteria decision-making process for selecting decontamination methods for radioactively contaminated metal components

  • Inhye Hahm ;Daehyun Kim;Ho jin Ryu;Sungyeol Choi
    • Nuclear Engineering and Technology
    • /
    • 제55권1호
    • /
    • pp.52-62
    • /
    • 2023
  • Various decontamination technologies have been developed for removing contaminated areas in industries. Although it is important to consider parameters such as safety, cost, and time when selecting the decontamination technology, till date their comparative study is missing. Furthermore, different decontamination technologies influence the decontamination effects in different ways. Therefore, this study compares different decontamination techniques for the steam generator using a multicriteria decision-making method. A steam generator is a large device comprising both low- and very low-level waste (LLW, VLLW) and reflects the difference in weights of the standards according to the classification of the waste. For LLW and VLLW decontaminations, chemical oxidizing reduction decontamination (CORD) and decontamination grit blasting were used as the preferred techniques, respectively, considering the purpose of decontamination differs based on the initial state of waste. An expert survey revealed that safety in LLW and waste minimization in VLLW exhibited high preference. This evaluation method can be applied not only to the comparison between each process, but also to the creation of process scenarios. Therefore, determining the decontamination approach using logical decision-making methods may improve the safety and economic feasibility of each step in the decommissioning process and ensure a public acceptance.