• Title/Summary/Keyword: Chemical bonding state

Search Result 138, Processing Time 0.026 seconds

Excited State Dynamics of Curcumin and Solvent Hydrogen Bonding

  • Yang, Il-Seung;Jin, Seung-Min;Kang, Jun-Hee;Ramanathan, Venkatnarayan;Kim, Hyung-Min;Suh, Yung-Doug;Kim, Seong-Keun
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.spc8
    • /
    • pp.3090-3093
    • /
    • 2011
  • Curcumin is a natural product with antioxidant, anti-inflammatory, antiviral and antifungal functions. As it is known that the excited state intramolecular hydrogen transfer of curcumin are related to its medicinal antioxidant mechanism, we investigated its excited state dynamics by using femtosecond transient absorption spectroscopy in an effort to understand the molecule's therapeutic effect in terms of its photophysics and photochemistry. We found that stronger intermolecular hydrogen bonding with solvents weakens the intramolecular hydrogen bonding and decelerates the dynamical process of the enolic hydrogen. Exceptions are found in methanol and ethylene glycol due to their nature as simultaneous hydrogen bonding donor-acceptor and high viscosity solvent, respectively.

Facile Modulation of Electrical Properties on Al doped ZnO by Hydrogen Peroxide Immersion Process at Room Temperature

  • Park, Hyun-Woo;Chung, Kwun-Bum
    • Applied Science and Convergence Technology
    • /
    • v.26 no.3
    • /
    • pp.43-46
    • /
    • 2017
  • Aluminum-doped ZnO (AZO) thin films were deposited by atomic layer deposition (ALD) with respect to the Al doping concentrations. In order to explain the chemical stability and electrical properties of the AZO thin films after hydrogen peroxide ($H_2O_2$) solution immersion treatment at room temperature, we investigated correlations between the electrical resistivity and the electronic structure, such as chemical bonding state, conduction band, band edge state below conduction band, and band alignment. Al-doped at ~ 10 at % showed not only a dramatic improvement of the electrical resistivity but also excellent chemical stability, both of which are strongly associated with changes of chemical bonding states and band edge states below the conduction band.

Calculation on Electronic State and Chemical Bonding of $\beta$-$MnO_2$ by DV-X$\alpha$ Method (분자궤도계산법에 의한 $\beta$-$MnO_2$의 전자상태 및 화학결합 계산)

  • 이동윤;김봉서;송재성;김현식
    • Korean Journal of Crystallography
    • /
    • v.14 no.1
    • /
    • pp.16-23
    • /
    • 2003
  • The electronic structure and chemical bonding of β-MnO₂ were theoretically investigated by DV-X/sub α/ (the discrete variation X/sub α/) method. which is a sort of the first principle molecular orbital method using Hatre-Fock-Slater approximation. The calculations on several cluster models having different sizes were carried out for the determination of a model suited for analyzing bulk state. The Mn/sub 15/O/sub 56/ model was selected as a sufficiently suitable model for the calculation of electronic state and chemical bonding by the comparison of the calculated XPS (X-ray photo-electron spectrum) and experimentally measured XPS. By using this model, the electron energy level, the density of state, the bond overlap population, the charge density distribution, and the net ionic transfer between cations and anions were calculated and discussed.

Solvatochromic Effects and Hydrogen Bonding Interactions of 4-(4-Nitrophenylazo)-1-naphthol Derivatives

  • 신동명;권오악
    • Bulletin of the Korean Chemical Society
    • /
    • v.16 no.7
    • /
    • pp.574-577
    • /
    • 1995
  • Solvatochromic effect and hydrogen bonding interaction of NPNOH, NPNO- and NPNOR were investigated. Electronic transition energies of the dyes were plotted against empirical solvent polarity parameters, Taft's π* and Reichardt's ET(30). Good correlations were observed when the excitation energies were plotted against the energy calculated by multiple linear regression method which was developed by Taft. There is an intrinsic difference between betaine for ET(30) polarity scale and the azoderivative, which is derived from the specific hydrogen bond incurred with probe molecules and solvents. The hydrogen bonding plays a very important role for stabilization of an excited state molecule by solvents especially when a solute possesses a negative charge as with NPNO-.

Hydrogen Bonding Dynamics of Phenol-(H2O)2 Cluster in the Electronic Excited State: a DFT/TDDFT Study (전자 여기상태에서 phenol-(H2O)2 크러스터의 수소결합 동력학: DFT/TDDFT 연구)

  • Wang, Se;Hao, Ce;Wang, Dandan;Dong, Hong;Qiu, Jieshan
    • Journal of the Korean Chemical Society
    • /
    • v.55 no.3
    • /
    • pp.385-391
    • /
    • 2011
  • The time-dependent density functional theory (TDDFT) method has been carried out to investigate the excitedstate hydrogen-bonding dynamics of phenol-$(H_2O)_2$ complex. The geometric structures and infrared (IR) spectra in ground state and different electronically excited states ($S_1$ and $T_1$) of the hydrogen-bonded complex have been calculated using the density functional theory (DFT) and TDDFT method. A ring of three hydrogen bonds is formed between phenol and two water molecules. We have demonstrated that the intermolecular hydrogen bond $O_1-H_2{\cdots}O_3-H$ of the three hydrogen bonds is strengthened in $S_1$ and $T_1$ states. In contrast, the hydrogen bond $O_5-H_6{\cdots}O_1-H$ is weakened in $S_1$ and $T_1$ states. These results are obtained by theoretically monitoring the changes of the bond lengths of the hydrogen bonds and hydrogen-bonding groups in different electronic states. The hydrogen bond $O_1-H_2{\cdots}O_3-H$ strengthening in both the $S_1$ and $T_1$ states is confirmed by the calculated stretching vibrational mode of O-H (phenol) being red-shifted upon photoexcitation. The hydrogen bond strengthening and weakening behavior in electronically excited states may exist in other ring structures of phenol-$(H_2O)_n$.

Electronic state calculation of ceramics by $DV-X\;{\alpha}$ cluster method

  • Adachi, Hirohiko
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 1994.11a
    • /
    • pp.1-1
    • /
    • 1994
  • ;The electronic state calculations for various types of ceramic materials have beell performed by the use of $DV-X\;{\alpha}$ cluster method. The molecular orbital levels and wave functions for model clusters have been computed to study the electronic properties ami chemical bonding of the ceramics. For ${\beta}-sialon(Si_{6-z}Al_zO_zN_{8-z})$ which is a high temperature structural material based on ${\beta}-Si_3N_4$, we have made model cluster calculations to estimate the strength of chemical bonding between atoms by the Mulliken population analysis. It is found that the covalent bonding between Si and N atoms is very strong in pure ${\beta}-Si_3N_4$, but the covalency around solute atom is considerably weakened when Si atom is substituted by AI. This tendency is enhanced by an additional substitution of oxygen atom for N. The result calculated can well explain the experimental data of changes in mechanical properties such as the reductions of Young's modulus and Vickers hardness with increment of z-value in ${\beta}-sialon$. Various model clusters for transition metal oxides which show many interesting physical and chemical properties have also been calculated. High-valent perovskite-type iron oxides EMFe0_3E(M=Ca and Sr) possess very interesting magnetic and chemical properties. In these oxides, iron exists as $Fe^{4+}$ state, but the experimental measurement of Mossba~er effect suggests that disproportionation $2Fe^{4+}=Fe^{3+}+Fe^{5+}$ takes place for $CaFe0_3$ at low temperatures. The model cluster calculations for these compounds indicated the existence of considerably strong covalent bonding of Fe-O. The calculations of hyperfine interaction at iron neucleus show very good agreement with the experimental Mossbauer measurements. The result calculated also implies that the disproportionation reaction is strongly possible by assuming the quenching of breathing phonon mode at low temperatures.tures.

  • PDF

Bonding and Etchback Silicon-on-Diamond Technology

  • Jin, Zengsun;Gu, Changzhi;Meng, Qiang;Lu, Xiangyi;Zou, Guangtian;Lu, Jianxial;Yao, Da;Su, Xiudi;Xu, Zhongde
    • The Korean Journal of Ceramics
    • /
    • v.3 no.1
    • /
    • pp.18-20
    • /
    • 1997
  • The fabrication process of silicon-diamond(SOD) structure wafer were studied. Microwave plasma chemical vapor deposition (MWPCVD) and annealing technology were used to synthesize diamond film with high resistivity and thermal conductivity. Bonding and etchback silicon-on-diamond (BESOD) were utilized to form supporting substrate and single silicon thin layer of SOD wafer. At last, a SOD structure wafer with 0.3~1$\mu\textrm{m}$ silicon film and 2$\mu\textrm{m}$ diamond film was prepared. The characteristics of radiation for a CMOS integrated circuit (IC) fabricated by SOD wafer were studied.

  • PDF

Structure and Bonding of Perovskites A($Cu_{1/3}Nb_{2/3}$)$O_3$ (A=Sr, Ba and Pb) and their Series of Mixed Perovskites

  • Park Hyu-Bum;Huh Hwang;Kim Si-Joong
    • Bulletin of the Korean Chemical Society
    • /
    • v.13 no.2
    • /
    • pp.122-127
    • /
    • 1992
  • Some perovskites $A($Cu_{1}3}Nb_{2}3}$)O_3(A=$Sr^{2+}$$, $Ba^{2+}$ and $Pb^{2+}$) and their series of mixed perovskites have been prepared by solid state reaction. Single perovskite phase was obtained in Sr or Ba rich samples, but pyrochlore phase was found in Pb rich samples. The stability of perovskite phase is dependent on the ionicity of bonding as well as the tolerance factor. All the obtained perovskites have tetragonal symmetry distorted by Jahn-Teller effect of $Cu^{2+}$. In the case of $Sr(Cu_{1}3}Nb_{2}3})O_3$, some superlattice lines caused by threefold enlarging of fundamental unit cell were observed. And, the symmetry of B site octahedron and the bonding character of B-O bond have been studied by IR, ESR and diffuse reflection spectroscopy. It appeared that the symmetry and the bonding character are influenced by such factors as the size and the basicity of A cation.

Design of Supramolecular Electrolytes for Solid State Dye-sensitized Solar Cells (고체형 염료감응 태양전지용 초분자 전해질 개발)

  • Koh, Jong-Kwan;Koh, Joo-Hwan;Seo, Jin-Ah;Kim, Jong-Hak
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.24-27
    • /
    • 2009
  • Solid-state dye-sensitized solar cells (DSSCs) have been constructed employing supramolecular electrolytes with multiple hydrogen bonding. A supramolecule was facilely synthesized by one-pot reaction between the amines of methyl isocytosine (MIC) and the epoxy groups of poly(ethylene glycol diglycidyl ether) (PEGDGE) to produce quadruple hydrogen bonding units. Hydrogen bonding interactions and dissolution behavior of salt in supramolecular electrolytes are investigated. The ionic conductivity of the supramolecular electrolytes with ionic liquid, i.e. 1-methyl-3-propylimidazolium iodide (MPII) reaches $8.5{\times}10^{-5}$ S/cm at room temperature, which is higher than that with metal salt (KI). A worm-like morphology is observed in the FE-SEM micrographs of $TiO_2$ nanoporous layer, due to the connection of $TiO_2$ nanoparticles resulting from adequate coating by electrolytes. DSSCs employing the supramolecular electrolytes with MPII and KI exhibit an energy conversion efficiency of 2.5 % and 0.5 %, respectively, at 100 $mW/cm^2$, indicating the importance of the cation of salt. Solar cell performances were further improved up to 3.7 % upon introduction of poly(ethylene glycol dimethyl ether) (PEGDME) with 500 g/mol.

  • PDF

Effect of Transition Metal Dopant on Electronic State and Chemical Bonding of MnO2 (MnO2의 전자상태 및 화학결합에 미치는 천이금속 첨가의 효과)

  • 이동윤;김봉서;송재성;김양수
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.7
    • /
    • pp.691-696
    • /
    • 2004
  • The electronic state and chemical bonding of $\beta$-MnO$_2$ with transition metal dopants were theoretically investigated by DV-X$_{\alpha}$ (the discrete variational X$_{\alpha}$) method, which is a sort of the first principles molecular orbital method using the Hartree-Fock-Slater approximation. The calculations were performed with a $_Mn_{14}$ MO$_{56}$ )$^{-52}$ (M = transition metals) cluster model. The electron energy level, the density of states (DOS), the overlap population, the charge density distribution, and the net charges, were calculated. The energy level diagram of MnO$_2$ shows the different band structure and electron occupancy between the up spin states and down spin states. The dopant levels decrease between the conduction band and the valence band with the increase of the atomic number of dopants. The covalency of chemical bonding was shown to increase and ionicity decreased in increasing the atomic number of dopants. Calculated results were discussed on the basis of the interaction between transition metal 3d and oxygen 2p orbital. In conclusion it is expected that when the transition metals are added to MnO$_2$ the band gap decreases and the electronic conductivity increases with the increase of the atomic number of dopants. the atomic number of dopants.