• Title/Summary/Keyword: Chemical attack

Search Result 358, Processing Time 0.025 seconds

A Foundational Study on Effect of Siliceous Sealer for Reinforcement of Concrete Surface Layer (규산질계 액상형 바탕강화재의 콘크리트 표층부 보강특성에 관한 기초적 연구)

  • 최성민;곽규성;윤우옥;김상갑;오상근;안상덕
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.04b
    • /
    • pp.671-676
    • /
    • 1998
  • This study deals with the effect on penetration properties of siliceous ion througth the mortar applicated by the waterproofing coating materials of siliceous seler liquid type. The tests of properties for reinforcing effect in mortar substrate surface layer are five kinds of water permeability, absorption, compressive strength, surface layer strength, pH content and chemical attack effect. Water permeability of mortar coated siliceous sealer in very than that of plane mortar. compressive strength of mortar coated siliceous sealer in larger than that of plane mortar about 10%.

  • PDF

A Feasibility Analysis on Steel Net Gabion Reinforcement of Reinforced Earth-retaining Wall (자연친화적인 보강토 옹벽의 철판망 gabion 보강재 타당성 분석)

  • Chung, Dae-Seouk
    • Journal of Environmental Science International
    • /
    • v.17 no.2
    • /
    • pp.135-140
    • /
    • 2008
  • Steel net gabion is eco-friendly retaining wall structure showing favorable ability to overcome construction and environmental restriction and also to resist corrosion, chemical attack and degradation. This paper is dealt with the applicability of gabion metal net as a substitution of existing strengthening material. Pull out test was carried out to verify the applicability of gabion metal net. According to results, the increase of surcharge loading and horizontal load resulted in a yield of metal net. The stress at the time of yield was in the range of elasticity. Accordingly, gabion metal net can be substituted for existing geogrid and there is a need for experiment and analysis of arrangement direction and durability of gabion steel net.

Development of Chloride Ingress Model in Reinforced Concrete Structures (철근콘크리트 구조물의 염소이온 침투 모델 개발)

  • 구현본;이광명
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.05a
    • /
    • pp.731-736
    • /
    • 2002
  • The degradation of reinforced concrete (RC) structures due to physical and chemical attacks has been a major issue in construction engineering. Deterioration of RC structures due to chloride attack followed by reinforcement corrosion is one of the serious problems. The objective of this study is to develop a form of mathematical model of chloride ingress into concrete. In order to overcome some limits of the previous approaches, a mathematical model of chloride ingress into concrete consisting of chloride solution intrusion through the capillary pore and chloride ion diffusion through the pore water was proposed. Moreover, the variability of diffusivity of chloride ion due to degree of hydration of concrete, relative humidity in pore, exposure condition, and variation of chloride binding was considered in the chloride ingress model.

  • PDF

Role of ingredients for high strength and high performance concrete - A review

  • Parande, A.K.
    • Advances in concrete construction
    • /
    • v.1 no.2
    • /
    • pp.151-162
    • /
    • 2013
  • The performance characteristics of high-strength and high-performance concrete are discussed in this review. Recent developments in the field of high-performance concrete marked a giant step forward in high-tech construction materials with enhanced durability, high compressive strength and high modulus of elasticity particularly for industrial applications. There is a growing awareness that specifications requiring high compressive strength make sense only when there are specific strength design advantages. HPC today employs blended cements that include silica fume, fly ash and ground granulated blast-furnace slag. In typical formulations, these cementitious materials can exceed 25% of the total cement by weight. Silica fume contributes to strength and durability; and fly ash and slag cement to better finish, decreased permeability, and increased resistance to chemical attack. The influences of various mineral admixtures such as fly ash, silica fume, micro silica, slag etc. on the performance of high-strength concrete are discussed.

Fabrication of Three-Dimensional Reflective White Pattern using Dry-Film Resist

  • Jun, Hwa Joon;Na, Dae Gil;Kwon, Young Hoon;Kwon, Jin Hyuk
    • Journal of the Optical Society of Korea
    • /
    • v.19 no.1
    • /
    • pp.80-83
    • /
    • 2015
  • White reflective patterns are very difficult to fabricate, due to the scattering and reflection of light, especially when the pattern size goes down to micron size. A reflective white barrier structure of height $50{\mu}m$ and width $80{\mu}m$ was fabricated using dry-film resist as an intermediate reverse pattern. The reverse dry-film resist pattern was coated with an $SiO_2$ layer by sputtering, to protect the resist from chemical attack by the radical molecules in UV white resin. The UV white resin was applied on the dry-film resist pattern and then cured with ultraviolet light. The fine three-dimensional reflective patterns were finished by removing the dry-film resist.

Investigation of Durability of Electric Power Concrete Structures Exposed to Reclaimed Marine Land (해안매립지에 위치한 전력구 콘크리트 구조물의 내구성 조사)

  • Kim, Seong-Soo;Park, Kwang-Pil;Nam, Ba-Reum;Yoo, Ju-Hwan
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05b
    • /
    • pp.597-600
    • /
    • 2006
  • In Marine Land underground reinforced concrete structures, such as electric box power structure, water and chloride ion penetrated into concrete through the cracks of concrete and its permeable property, cause the corrosion of reinforcing steel bar, which accelerates the expansive cracks and deterioration of concrete. The purpose of this paper is to evaluate on deterioration of durability concrete through instrumental analysis such as schmidt hammer and carbonation, chloride content. Under the reclaimed marine land, the main cause of deterioration of concrete structures is the steel corrosion due to the penetration of chlorides and the deterioration of outer concrete itself by chemical attack.

  • PDF

Properties of Prepacked Concrete Using Super Early Hardening Mortar (초속경성 모르타르를 주입한 프리팩트 콘크리트의 물성 평가)

  • Yang Seung Kyu;Jeong Yon Shik;Um Tai Sun;Lee Jong Ryul
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.11a
    • /
    • pp.651-654
    • /
    • 2005
  • Fast-setting cement is usually used for emergency repair construction of roads, bridges, buildings and so on. In this study, we tried to develop fast-setting ultra early strength mortar for prepacked concrete and evaluated the properties of fresh and hardened concrete with it. The flowability of the mortar was high enough to be easily poured into coarse aggregates. It showed high early strength development which can make it possible to use newly constructed structures within $3\~4$ hours regardless of curing conditions such as curing temperature and curing environment. And it also showed good resistance to drying shrinkage and chemical attack.

  • PDF

Enhanced Secondary Metabolite Biosynthesis by Abiotic Elicitor in Transformed Plant Root System

  • Jeong, Gwi-Taek;Hwang, Baik;Woo, Je-Chang;Park, Don-Hee
    • 한국생물공학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.417-420
    • /
    • 2005
  • Plants generally produce secondary metabolites in nature as a defense mechanism against pathogenic and insect attack. In this study, we applied several abiotic elicitors in order to enhance growth and ginseng saponin biosynthesis in the hairy roots of P. ginseng. Generally, elicitor treatments were found to inhibit the growth of the hairy roots, although simultaneously enhancing ginseng saponin biosynthesis. The addition of selenium at inoculum time did not significantly affect ginseng saponin biosynthesis. However, when 0.5 mM selenium was added as an elicitor after 21 days of culture, ginseng saponin content and productivity increased to about 1.31 and 1.33 times control levels, respectively. These results suggest that processing time for the generation of ginseng saponin in a hairy root culture can be reduced via the application of an elicitor.

  • PDF

Diamond Conditioner Wear Characterization for a Copper CMP Process

  • Boruckia, L.;Zhuang, Y.;Kikuma, R.;Rikita, N.;Yamashita, T.;Nagasawa, K.;Lee, H.;Sun, T.;Rosales-Yeomans, D.;Philipossian, A.;Stout, T
    • Transactions on Electrical and Electronic Materials
    • /
    • v.8 no.1
    • /
    • pp.15-20
    • /
    • 2007
  • Conditioner wear, copper polish rates, pad temperature and coefficient of friction (COF) are measured for two novel Mitsubishi Materials Corporation designs during an extended wear and polishing test. Both designs are coated with a $Teflon^{TM}$ film to reduce substrate wear and chemical attack. Using optical interferometry, changes in the coating that result in gradual changes in diamond exposure are measured. Theories of the COF, conditioning, and polishing are applied to explain the observed performance differences between the designs.

An Integrated System to Predict Early-Age Properties and Durability Performance of Concrete Structures

  • Wang, Xiao-Yong;Lee, Han-Seung
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2010.05a
    • /
    • pp.465-466
    • /
    • 2010
  • In this paper, an integrated system is proposed which can evaluate both the early-age properties and durability performance of concrete structures. This integrated system starts with a hydration model which considers both Portland cement hydration and chemical reactions of supplementary cementing materials (SCM). Based on the degree of hydration of cement and mineral admixtures, the amount of reaction products, the early age heat evolution, chemically bound water, porosity, the early age short-term mechanical behaviors, shrinkage and early-age creep are evaluated as a function of curing age and curing conditions. Furthermore, the durability aspect, such as carbonation of blended concrete and chloride attack, are evaluated considering both the material properties and surrounding environments. The prediction results are verified through experimental results.

  • PDF