• Title/Summary/Keyword: Chemical activation

Search Result 1,786, Processing Time 0.029 seconds

Preparation and Properties of Pelletized Activated Carbons Using Coconut Char and Coal-Tar Pitch

  • Yang, Seung-Chun;Lee, Young-Seak;Kim, Jun-Ho;Lim, Chul-Kyu;Park, Young-Tae
    • Carbon letters
    • /
    • v.2 no.3_4
    • /
    • pp.176-181
    • /
    • 2001
  • A series of activated carbons were prepared from coconut shells and coal-tar pitch binder by physical activation with steam in this study. The effect of variable processes such as activation temperature, activation time and ratio of mixing was investigated for optimizing those preparation parameters. The activation processes were carried out continuously. The nitrogen adsorption isotherms at 77 K on pellet-shaped activated carbons show the same trend of Type I by IUPAC classification. The average pore sizes were about 19-21${\AA}$. The specific surface areas ($S_{BET}$) of pellet typed ACs increased with increasing the activation temperature and time. Specific surface area of AC treated for 90 min at temperature $900^{\circ}C$ was 1082 $m^2/g$. The methylene blue numbers continuously increased with increasing the activation temperature and time. On the other hand, iodine numbers highly increased till activation time of 60 min, but the rate of increase of iodine numbers decreased after that time. This indicates that new micropores were created and the existing micropores turned into mesopores and macropores because of increased reactivity of carbon surface and $H_2O$.

  • PDF

Derivation of Some Activation Parameters (새로운 활성화 파라메터의 유도)

  • Lee, Ik-Choon
    • Journal of the Korean Chemical Society
    • /
    • v.12 no.2
    • /
    • pp.61-64
    • /
    • 1968
  • Compressibility and expansibility of activation, ${\Delta}K^{\neq}\;and\;{\Delta}E^{\neq},$ are defined with the use of general principles that an activation parameter is the difference in partial molar quantities of the parameter for the transition and initial state. Two related parameters, (${\partial}{\Delta}H^{\neq}/{\partial}P)_{\gamma}\;and\;{\Delta}W^{\neq}(=P{\Delta}V^{\neq}),$ are also derived. Simpler interpretation of the existing kinetic data are possible with these activation parameters, while other derivations lead to complicated expressions of no practical significance.

  • PDF

Activated Clay Manufacturing Studies (I) Studies on Manufacturing Method of Activated Clay (活性白土에 關한 硏究(제I報) 活性白土 製浩方法 檢討에 關하여)

  • Son, Sun-Kwan;Yang, Jai-Keun
    • Journal of the Korean Chemical Society
    • /
    • v.14 no.4
    • /
    • pp.297-308
    • /
    • 1970
  • In order to search a method of manufacturing better activated clay in an effcient way, attempt was made to select particularly samples for activation to concentrate the research upon them with varied activation to concentrate the research upon them with varied activation conditions. Special attention was also made to the low quality materials because they may become good activated clay if treated under a suitable activation condition.

  • PDF

Surface and Adsorption Properties of Activated Carbon Fabric Prepared from Cellulosic Polymer: Mixed Activation Method

  • Bhati, Surendra;Mahur, J.S.;Dixit, Savita;Choubey, O.N.
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.2
    • /
    • pp.569-573
    • /
    • 2013
  • In this study, activated carbon fabric was prepared from a cellulose-based polymer (viscose rayon) via a combination of physical and chemical activation (mixed activation) processes by means of $CO_2$ as a gasifying agent and surface and adsorption properties were evaluated. Experiments were performed to investigate the consequence of activation temperature (750, 800, 850 and $925^{\circ}C$), activation time (15, 30, 45 and 60 minutes) and $CO_2$ flow rate (100, 200, 300 and 400 mL/min) on the surface and adsorption properties of ACF. The nitrogen adsorption isotherm at 77 K was measured and used for the determination of surface area, total pore volume, micropore volume, mesopore volume and pore size distribution using BET, t-plot, DR, BJH and DFT methods, respectively. It was observed that BET surface area and TPV increase with rising activation temperature and time due to the formation of new pores and the alteration of micropores into mesopores. It was also found that activation temperature dominantly affects the surface properties of ACF. The adsorption of iodine and $CCl_4$ onto ACF was investigated and both were found to correlate with surface area.

Scutellaria baicalensis Georgi Extracts inhibit RANKL-induced Osteoclast Differentiation

  • Shim, Ki-Shuk;Kim, Soon-Nam;Kim, Myung-Hee;Kim, Young-Sup;Ryu, Shi-Yong;Min, Yong-Ki;Kim, Seong-Hwan
    • Natural Product Sciences
    • /
    • v.14 no.3
    • /
    • pp.182-186
    • /
    • 2008
  • Scutellaria baicalensis Georgi (SBG) is traditionally used medicinal herb that has anti-oxidant, anticancer and anti-inflammatory effects. In this study, we investigated whether the extracts of SBG have the inhibitory activity in the osteoclast differentiation by using mouse monocytes RAW264.7 cells and primary mouse bone marrow-derived macrophages (BMMs). Methanol extract (ME) from SBG was successively fractionated into methylene chloride (MF), ethylacetate (EF) and n-butanol fraction (BF). The activity assay for tartrateresistant acid phosphatase (TRAP) and Western blot analysis were employed to evaluate the osteoclasts differentiation and the activation of mitogen-activated protein (MAP) kinases, respectively. ME, MF, EF and BF significantly and dose-dependently inhibited osteoclast differentiation without the decrease of cell viability at the concentrations used in this study. In addition, ME significantly inhibited the activation of c-jun-N-terminal kinase (JNK). In conclusion, this study firstly demonstrated that ME of SBG has the potential to inhibit the osteoclast differentiation through the suppression of JNK activation partially.

Theoretical Study of C-H σ-Bond Activation and Related Reactions

  • Sakaki, Shigeyoshi
    • Bulletin of the Korean Chemical Society
    • /
    • v.24 no.6
    • /
    • pp.829-831
    • /
    • 2003
  • Various theoretical studies of σ-bond activation of organic molecules by transition metal complexes arereviewed. In the homolytic σ-bond activation, the d orbital energy level of the central metal is an importantfactor, as well known. At the same time, the electron-withdrawing substituent which stabilizes the sp3 orbitalaccelerates the homolytic σ-bond activation. In the heterolytic C-H σ-bond activation of RH by $MXL_n$, the XHbond formation is an important driving force, where $MRL_n$ and HX are formed as products. The heterolytic σ-bond activation is also understood in terms of the electrophilic attack of the metal center to the substrate.

Effect of Voltage Range and Number of Activation Cycles in the Activation Process of a Polymer Electrolyte Fuel Cell (고분자 전해질 연료전지의 활성화과정에서 전압 범위 및 활성화 횟수의 영향)

  • Donggeun Yoo;Sohyeong Oh;Sunggi Jung;Jihong Jeong;Kwonpil Park
    • Korean Chemical Engineering Research
    • /
    • v.61 no.1
    • /
    • pp.58-61
    • /
    • 2023
  • The activation process is essential for PEMFC to improve initial performance. The most commonly used activation method is a voltage change (load change) method, which may accompany degradation of the electrode catalyst if excessively performed. In many activation processes, the voltage change range is activated in a wide range from 0.4 V to OCV, and research is needed to reduce the voltage change range in order to prevent electrode catalyst degradation and shorten the activation time. Therefore, in this study, when the activation voltage range was 0.4~0.6 V, 0.4~0.8 V, and 0.4~OCV, we tried to research and develop an effective activation method by analyzing the performance and characteristics of the electrode and polymer membrane. The performance improvement was the lowest in the activation with a wide voltage range from 0.4 V to the highest OCV, and the performance decreased by 10% when activated for 56 cycles. The 0.4~0.6 V activation cycle showed the highest performance improvement up to 20% and the smallest decrease in performance due to overactivation, indicating that it is optimal method.