• Title/Summary/Keyword: Chemical Speciation

Search Result 108, Processing Time 0.026 seconds

Geochemical Characteristics and Trace Metal Speciation of Soils in Major Source Area of Asian Dust (주요 황사발원지 토양의 지구화학적 특성 및 미량원소 존재형태 연구)

  • Lee, Pyeong-Koo;Youm, Seung-Jun;An, Gi-O
    • Economic and Environmental Geology
    • /
    • v.45 no.1
    • /
    • pp.9-21
    • /
    • 2012
  • In this study, we investigated the chemical characteristics of soils collected from the several deserts and loess in China known as the typical source areas of Asian dust (the Taklamakan desert, the Alashan desert, the Ordos desert and the Loess Plateau). Based on our analysis, we examined the possibility of adverse effects on environments and human health. In each desert and loess, major elemental compositions of soils did not show large variations, implying that the long-periodic mixing of soils in each area made their chemical compositions homogeneous. Minor elements of soils in each desert and loess showed more complicated patterns with strong correlations each other (e.g., Cr, Cu, As, Co, Ni, V, Y, Sc, Sn, Pb, Zn, Cd, Cs, Li, Th, U). These results thus enable us to discriminate the soil of the Loess Plateau from those of the other deserts in China. The results of sequential extraction experiments for soils showed that the chemical speciation of Fe was dominant in residual fraction (>85%) in all deserts and loess, but the fractions of Mn and Ca chemical speciations were very different in each area. In the case of Mn, the fraction of amorphous Fe-Mn hydroxides (55.4%) in the Central Loess Plateau and the carbonate fraction (33.8%) in Taklamakan desert were higher as much as 2 to 5 times than other deserts. The chemical speciations of Ca are dominant in carbonate fraction in Taklamakan (75.9%) and Alashan (50.5%) deserts, but carbonate fractions of Ca in the Loess Plateau and Ordos deserts were low (6.6% and 2.1%, respectively). According to the mobility of trace elements inferred from the results of sequential extraction procedure, we could classify them into five groups, and the mobility of Cd, Pb and Cu are more than 87%, 33% and 30%, respectively. Therefore, Cd, Pb and Cu in soils of deserts and loess could be easily dissolved when interacted with surface water. As such, they could give adverse effects on surficial environments and human health.

Evaluation of Analytical Results of Heavy Metal Concentrations in Soils from the Dalsung Mine Area, Korea (달성광산지역 토양의 중금속함량 분석결과의 평가)

  • 김경웅
    • Journal of the Korean Society of Groundwater Environment
    • /
    • v.4 no.1
    • /
    • pp.20-26
    • /
    • 1997
  • This paper examines the influences of mining activities on the concentrations of heavy metals in soils in the vicinity of the Dalsung Cu-W mine, Korea. Geochemical surveys were undertaken in the Dalsung mine area and sampling of surface and subsurface soils was carried out. Samples were prepared using 0.1 N HCI, HNO$_3$-HClO$_4$, and aqua regia, and analyzed for Cd, Cu, Pb and Zn by Atomic Absorption Spectrometry. In addition, soil samples were sequentially extracted to investigate the chemical speciation of heavy metals in soils. Heavy metals are highly contaminated in soils in the vicinity of mining area ranging up to 28 $\mu\textrm{g}$/g Cd, 5000 $\mu\textrm{g}$/g Cu, 2390 $\mu\textrm{g}$/g Pb and 930 $\mu\textrm{g}$/g Zn by the method using HNO$_3$-HClO$_4$. The pollution indices calculated with the permissible levels are up to 49 in surface and subsurface soils, which are considered sufficient to raise environmental problems. However, the heavy metal levels by the method using 0.1 N HCl are not higher than Korean standard for soil contamination. It suggests that analytical methods and soil standard should be re-examined. From the results of the sequential extraction methods for metal speciation, total Cu, Pb and Zn concentrations may be determined by analytical methods using HNO$_3$-HClO$_4$ or aqua regia, and exchangeable phase of those metals by the method using 0.1 N HCl.

  • PDF

Contamination and Geochemical Speciation of Heavy Metals in Middle Cover Soils and Clay Liner from the Kumheung Landfill, Gongju City (공주 금흥매립지의 중간복토재 및 차수재(논토양)의 중금속 오염과 존재형태 연구)

  • 이평구;박성원;염승준
    • Economic and Environmental Geology
    • /
    • v.34 no.3
    • /
    • pp.283-299
    • /
    • 2001
  • The middle cover soils and clay liners collected from the Kumheung landfill in Gongiu City were analysed for As, Ba, Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, Sr, Ti and Zn concentrations using 0.] N HCl digestion and total/sequential extraction experiments followed by ICP-AES determination. The uncontaminated soil and sediment samples were also analyzed for the comparison. The results of sequential extraction showed that Cu was dominant in the oxidizable fraction, and As, Ni, Sr, Ba, and Mn were in the exchangeable fraction. Zinc and Mn occurred mostly in association with reducible, residual and carbonate fractions. Most of Cd and Pb were bound to the reducible and oxidizable fractions. The main carrier of Co, Cr, Fe and 11 was the residual fraction and another important carrier was the reducible fraction. The percentage of the metals of organically-bound form in the middle cover soils and clay liner was in the order of Cu(48%) > Ti(42%) > Pb(27%) > As(25%) > Cd(20%). As deduced from sequential extraction analysis, potential order of metal mobility in the middle cover soils and clay liner from the landfill was proposed: Cd > Sr > As > Ni > Mn > Ba > Cu > Pb > Zn » Co > 11 > Fe > Cr. Based on the 'geoaccumulation index' and the 'enrichment factor' normalized to A], the level of contamination of Cu, Ni and C1' was significant in the samples from Kumheung landfill and surrounding farmland. Their enrichments were attributed partly to anthropogenic pollutions.

  • PDF

Accumulation, Mobility, and Availability of Copper and Zinc in Plastic Film House Soils Using Speciation Analysis (종 분석을 이용한 시설재배지 토양 구리와 아연의 집적, 이동성 및 유효성 평가)

  • Kim, Rog-Young;Sung, Jwa-Kyung;Lee, Ju-Young;Lee, Ye-Jin;Jung, Sug-Jae;Lee, Jong-Sik;Jang, Byoung-Choon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.6
    • /
    • pp.937-944
    • /
    • 2010
  • Cu and Zn can be accumulated in plastic film house soils by long-term application of livestock manure or compost. The mobility and bioavailability of Cu and Zn accumulated in soils are strongly influenced by their chemical or geochemical species in soils. In order to assess the accumulation, mobility, and bioavailability of Cu and Zn in plastic film house soils, we determined their geochemical species using a sequential extraction, grouped into three pods: the total pool, the potentially mobil pool, and the mobil pool. Total contents of Cu and Zn, ranged from 14.9 to 53.1 mg $kg^{-1}$ for Cu and from 55.4 to 169 mg $kg^{-1}$ for Zn, lied by far below the soil contamination standards, but exhibited little accumulation compared with their geogenic concentrations. Mobile contents of Cu and Zn and their percentage of total contents were strongly affected by soil pH in addition to total contents and soil organic matter. Mobile contents of Cu, ranged from <0.01 to 1.71 mg $kg^{-1}$, showed their minimum between pH 5.0 and 6.0 and increased above pH 6.0 to 8.0. In contrast, mobile contents of Zn, varied from <0.01 to 12.4 mg $kg^{-1}$, showed their minimum above pH 7.0 and increased strongly with decreasing pH below 5.5~6.0. Potentially mobile and total contents of Cu and Zn rose with ascending soil organic matter. To assess ecological and toxic effects of Cu and Zn in soils, mobile and potentially mobile contents, as bioavailable and potentially bioavailable pools, should be considered more important than total contents.

Preliminary Results of Extraction, Separation and Quantitation of Arsenic Species in Food and Dietary Supplements by HPLC-ICP-MS

  • Nam, Sang-Ho;Cheng, John;Mindak, William R.;Capar, Stephen G.
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.6
    • /
    • pp.903-908
    • /
    • 2006
  • Various extraction procedures were investigated using reference materials and samples to evaluate extraction efficiency and effectiveness. Inductively coupled plasma mass spectrometry (ICP-MS) was used to measure total arsenic and to quantitate arsenic species when coupled to an HPLC (high pressure liquid chromatography). Arsenic species were extracted from rice flour (NIST SRM 1568a) with water/methanol mixtures using accelerated solvent extraction (ASE). Total arsenic extraction efficiency ranged from 42 to 64%, for water and various methanol concentrations. From spinach (NIST SRM 1570), freeze-dried apple, and rice flour (NIST SRM 1568a), arsenic species were extracted with trifluoroacetic acid (TFA) at 100 ${^{\circ}C}$. Total arsenic extraction efficiency was 90% for spinach, 75% for freeze-dried apple, and 83% for rice flour. Enzymatic extraction with alpha-amylase and sonication resulted in extraction efficiency of 104% for rice flour, 98% for freeze-dried apple, and 7% for spinach. Chromatograms of arsenic species extracted by the optimum extraction methods were obtained, and the species were quantified. Arsenite (As(III)), arsenate (As(V)), dimethylarsinic acid (DMA), and monomethylarsonic acid (MMA) were found in the apple sample, and DMA and As(V) in the rice flour sample. As(V) and MMA were found in three herbal dietary supplement samples.

Development of Isotope Dilution LC-MS/MS Method for Accurate Determination of Arsenobetaine in Oyster Certified Reference Material

  • Lee, Woo Young;Yim, Yong-Hyeon;Hwang, Euijin;Lim, Youngran;Kim, Tae Kyu;Lee, Kyoung-Seok
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.3
    • /
    • pp.821-827
    • /
    • 2014
  • An isotope dilution liquid chromatography tandem mass spectrometry (ID LC-MS/MS) method has been developed and applied to the determination of arsenobetaine (AsB, ${(CH_3)_3}^+AsCH_2COO^-$) from oyster candidate certified reference material (CRM). The exact matching isotope dilution approach was adopted for accurate determination of AsB using $^{13}C_2$-labeled AsB as an internal standard. Efficiencies of different AsB extraction methods were evaluated using a codfish reference material and a simple sonication method was selected as the method of choice for the certification of the oyster candidate CRM. The hydrophilic interaction liquid chromatography (HILIC) combined with electrospray ionization tandem mass spectrometry (ESI/MS/MS) in selected reaction monitoring (SRM) mode was optimized for adequate chromatographic retention and robust quantification of AsB from codfish and oyster samples. By analyzing 12 subsamples taken from each 12 bottles systematically selected from the whole oyster CRM batch, the certified value of AsB was determined as $6.60mg{\cdot}kg^{-1}{\pm}0.31mg{\cdot}kg^{-1}$ and it showed excellent between-bottle homogeneity of less than 0.42%, which is represented by relative standard deviation of 12 bottles from the CRM batch. The major source of uncertainty was the certified value of the AsB standard solution.

Dispersion and Migration of Potentially Toxic Elements in the Rock-Soil-Plant System from the Boeun Area Underlain by Black Shales, Korea (보은지역 흑색셰일 분포지역에서의 암석-토양-식물계내 잠재적 독성원소들의 분산과 이동)

  • Lee, Jin-Soo;Chon, Hyo-Taek;Kim, Kyoung-Woong
    • Economic and Environmental Geology
    • /
    • v.30 no.6
    • /
    • pp.587-601
    • /
    • 1997
  • This study had three purposes: (1) to investigate the enrichment levels and dispersion patterns of potentially toxic elements in the rock-soil-plant system; (2) to evaluate the uptake ratios of heavy metals from soils into plants and (3) to assess the chemical speciation of heavy metals in soils. Rock, surface soil and plant samples were collected in the Boeun area underlain by black shales of the Okchon Zone. These samples were analyzed for multi-elements using INAA, ICP-AES and AAS. The maximum abundance of U in black shales is 16 mg/kg and radioactivity counts up to 300 cpm. In particular, Mo, V, Ba, Cd, Pb and U are enriched in black shales. Most of soils derived from black shales show high concentrations of U, As, Mo, Ba, Cu, Cd, Pb, Zn and mean concentrations of As and Mo in soils (20 mg/kg of As and 6.6 mg/kg of Mo) are higher than the permissible level suggested by Kloke (1979). Enrichment index values of soils are calculated and higher than 1.0 in the black shale area with the highest value of 6.4. Mean concentration of Cd in plants is higher than those of Cu, Pb and Zn. The concentration of Cd in plant species decreases in the order of Chinese cabbage > red pepper > soybean=sesame > rice stalk > com > rice grain. The biological absorption coefficients (BAC) in plants are in the order of Cd > Zn=Cu > Pb, which suggests that Cd is more bioavailable to plants than Cu, Pb and Zn. From the results of sequential extraction analysis of soils, relatively high proportion of Cu, Pb and Zn are present as residual fractions whereas that of Cd as non-residual fractions. Cadmuim occurs predominantly as exchangeable/water-acid soluble phase in soils, and Cd is more mobile and bioavailable than Cu, Pb and Zn.

  • PDF

Chlorine Disinfection in Water Treatment Plants and its Effects on Polyamide Membrane (수처리장에서의 염소살균처리가 폴리아마이드 분리막에 미치는 영향)

  • Jun, Byung-Moon;Yun, Eun-Tae;Han, Sang-Woo;Nguyen, Thi Phuong Nga;Park, Hyung-Gyu;Kwon, Young-Nam
    • Membrane Journal
    • /
    • v.24 no.2
    • /
    • pp.88-99
    • /
    • 2014
  • Demand for water is increasing due to rapid population growth and increased industrial activities. Membrane technologies have attracted most attention as a promising advanced technology for the supply of sustainable water resources. Chemical and structural properties of polyamide membranes, one of the most widely used membranes in water treatment plant, has been reported to be affected by residual chlorine dissolved in water after chlorine disinfection. This paper focuses on the chlorine speciation at various solution pHs and change of surface properties/performance of polyamide membranes due to the chlorine exposure.

Development of an Emissions Processing System for Climate Scenario Inventories to Support Global and Asian Air Quality Modeling Studies

  • Choi, Ki-Chul;Lee, Jae-Bum;Woo, Jung-Hun;Hong, Sung-Chul;Park, Rokjin J.;Kim, Minjoong J.;Song, Chang-Keun;Chang, Lim-Seok
    • Asian Journal of Atmospheric Environment
    • /
    • v.11 no.4
    • /
    • pp.330-343
    • /
    • 2017
  • Climate change is an important issue, with many researches examining not only future climatic conditions, but also the interaction of climate and air quality. In this study, a new version of the emissions processing software tool - Python-based PRocessing Operator for Climate and Emission Scenarios (PROCES) - was developed to support climate and atmospheric chemistry modeling studies. PROCES was designed to cover global and regional scale modeling domains, which correspond to GEOS-Chem and CMAQ/CAMx models, respectively. This tool comprises of one main system and two units of external software. One of the external software units for this processing system was developed using the GIS commercial program, which was used to create spatial allocation profiles as an auxiliary database. The SMOKE-Asia emissions modeling system was linked to the main system as an external software, to create model-ready emissions for regional scale air quality modeling. The main system was coded in Python version 2.7, which includes several functions allowing general emissions processing steps, such as emissions interpolation, spatial allocation and chemical speciation, to create model-ready emissions and auxiliary inputs of SMOKE-Asia, as well as user-friendly functions related to emissions analysis, such as verification and visualization. Due to its flexible software architecture, PROCES can be applied to any pregridded emission data, as well as regional inventories. The application results of our new tool for global and regional (East Asia) scale modeling domain under RCP scenario for the years 1995-2006, 2015-2025, and 2040-2055 was quantitatively in good agreement with the reference data of RCPs.

A Comparative Study on Adsorption Behavior of Heavy Metal Elements onto Soil Minerals : Illite, Halloysite, Zeolite, and Goethite (토양광물에 대한 중-금속원소의 흡착특성 비교연구: 일라이트, 할로이사이트, 제올라이트, 및 침철석)

  • 추창오;성익환
    • Journal of Korea Soil Environment Society
    • /
    • v.4 no.1
    • /
    • pp.57-68
    • /
    • 1999
  • Adsorption behavior of metal elements onto soil minerals such as illite, halloysite. zeolite(clinoptilolite). and goethite was comparatively investigated at $25^{\circ}C$ using pollutant water collected from a gold-bearing metal mine. Speciation of solutions reacted was determined by WATEQ4F program, indicating that most of metal ions exist as free ions and that there is little difference in chemical species and their relative abundances between initial soultion and reacted solutions. The experimental data exhibit that the adsorption extent of elements varies depending on mineral types and reaction time. The adsorption process practically took place within one hour, with Fe and As significantly removed from solutions. On the whole, halloysite is regarded as the most effective adsorbent among minerals used in the experiment. Adsorption properties of alkali elements do not consistent with a manner predicted from hydrated ionic radii.

  • PDF