• Title/Summary/Keyword: Chemical Speciation

Search Result 108, Processing Time 0.024 seconds

Application of Laser Induced Photoacoustic Spectroscopy in the Investigation of Interaction of Neodymium(III) with Water Soluble Synthetic Polymer

  • Tae Hyung Yoon;Hichung Moon;Seung Min Park;Joong Gill Choi;Paul Joe Chong
    • Bulletin of the Korean Chemical Society
    • /
    • v.14 no.5
    • /
    • pp.574-578
    • /
    • 1993
  • Laser-induced photoacoustic spectroscopy (LIPAS), which utilizes the photothermal effect that results from nonradiative relaxation of excited state molecules, was used in the speciation analysis of the complexes of neodymium(III) and water soluble synthetic polyelectrolyte, poly methacrylic acid (PMAA), in 0.1 M $NaClO_4$ at pH of 6.0. The minimum detection limit of Nd(III) by LIPAS was $5.O{\times}10^{-6}$ M. Experiment was carried out at low concentration ratio of Nd(III) to PMAA to assure that 1 : 1 complexes predominate. The bound and free Nd(III) species were characterized by measuring nonradiative relaxation energy of the excited states $(^2GM{7/2}\;and\;^4G_{5/2})$ to the metastable state $(^4G_{3/2})$. Two species were quantified by deconvolution of the mixed spectrum using their respective reference spectra. The conditional stability constant measured by LIPAS was 5.52 L$mol^{-1}$.

Study on Particulate Pollutant Reduction Characteristics of Vegetation Biofilters in Underground Subway Stations (지하역사내 식생바이오필터의 입자상 오염물질 저감특성 연구)

  • Kim, Tae Han;Oh, Ji Eun;Kim, Mi Ju
    • Journal of the Semiconductor & Display Technology
    • /
    • v.21 no.4
    • /
    • pp.99-105
    • /
    • 2022
  • Public attention to the indoor environment of underground subway stations, which is a representative multi-use facility, has been increasing along with the increase in indoor activities. In underground stations, fine iron oxide, which affects the health of users, is generated because of the friction between wheels and rails. Among particulate pollutant reduction technologies, plants have been considered as a non-chemical air purification method, and their effects in reducing certain chemical species have been identified in previous studies. The present study aimed to derive the total quantitative and qualitative reduction effects of a bio-filter system comprising air purifying plants, installed in an underground subway station. The experiment proceeded in two ways. First, PM(particulate matter) reduction effect by vegetation biofilter was monitored with the IAQ(indoor air quality) station. In addition, chemical speciation analysis conducted on the samples collected from the experimental and control areas where plants and irrigation using SEM-EDS(scanning electron microscopy-energy dispersive X-ray spectroscopy). This study confirmed the effect of the vegetation bio-filter system in reducing the accumulation of particulate pollutants and transition and other metals that are harmful to the human body.

Use of Multivariate Statistical Approaches for Decoding Chemical Evolution of Groundwater near Underground Storage Caverns (다변량통계기법을 이용한 지하저장시설 주변의 지하수질 변동에 관한 연구)

  • Lee, Jeonghoon
    • Journal of the Korean earth science society
    • /
    • v.35 no.4
    • /
    • pp.225-236
    • /
    • 2014
  • Multivariate statistical analyses have been extensively applied to hydrochemical measurements to analyze and interpret the data. This study examines anthropogenic factors obtained from applications of correspondence analysis (CA) and principal component analysis (PCA) to a hydrogeochemical data set. The goal was to synthesize the hydrogeochemical information using these multivariate statistical techniques by incorporating hydrogeochemical speciation results calculated by the program, commonly used, WATEQ4F included in the NETPATH. The selected case study was LPG underground storage caverns, which is located in the southeastern Korea. The highly alkaline groundwaters at this study area are an analogue for the repository system. High pH, speciation of Al and possible precipitation of calcite characterize these groundwaters. Available groundwater quality monitoring data were used to confirm these statistical models. The present study focused on understanding the hydrogeochemical attributes and establishing the changes of phase when two anthropogenic effects (i.e., disinfection activity and cement pore water) in the study area have been introduced. Comparisons made between two statistical results presented and the findings of previous investigations highlight the descriptive capabilities of PCA using calculated saturation index and CA as exploratory tools in hydrogeochemical research.

A Study on Emission Characteristics of Mercury from Coal Combustion at a Lab-scale Furnace (실험용 연소로에서 석탄 연소 시 발생하는 수은 배출특성 연구)

  • Park, Kyu-Shik;Lee, Ju-Hyoung;Kim, Jeong-Hun;Lee, Sang-Hyeob;Seo, Yong-Chil
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.24 no.2
    • /
    • pp.238-248
    • /
    • 2008
  • This study investigated mercury emission at various combustion conditions and analyzed mercury species in flue gas from coal combustion at a laboratory scale furnace in coal. The results of this study can be used to predict and to assess mercury emission at coal boilers and power plants. The coal used in the plants generally contains about $0.02{\sim}0.28\;mg$ of mercury per kg. Bituminous and anthracite coal used for the experiment contained 0.049 and 0.297 mg/kg of mercury, respectively. Mercury emissions during coal combustion at temperatures range of $600^{\circ}C$ to $1,400^{\circ}C$ was measured and analysed using Ontario Hydro method; the speciation changes were also observed in mercury emissions. The results showed higher fraction of elemental mercury than that of oxidised mercury at most temperatures tested in this experiment. The fraction of elemental mercury was lower in combustion of anthracite coal than in bituminous combustion. As expected, equilibrium calculations and real power plants data showed good similarity. The distribution of particle size in flue gas had the higher peak in size above $2.5\;{\mu}m$. However the peak of mercury enrichment in dust was at $0.3\;{\mu}m$, which could be easily emitted into atmosphere without filtration in combustion system. When the CEA(Chemical equilibrium and Application) code was used for combustion equilibrium calculation, Cl was found to be the important component effecting mercury oxidation, especially at the lower temperatures under $900^{\circ}C$.

Arsenic environmental contamination, chemical speciation and its behaviour in the water system from some abandoned Au-Ag mines, Korea

  • Yi Ji-Min;Chon Hyo-Taek;Lee Jin-Soo
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2003.11a
    • /
    • pp.522-525
    • /
    • 2003
  • Mine waters, surface waters and groundwaters were sampled around seven Au-Ag mine areas (Dongil, Okdong, Dongjung, Songcheon, Ssangjeon, Dogok and Gubong Au-Ag mines). The main contamination sources of As in these abandoned Au-Ag mines can be suggested as mine tailings and waste rocks including the sulfide gangue minerals (arsenopyrite). The relatively high concentration of As in mine waters was shown in the Dongil (524 ${\mu}g/L$) and the Dogok (56 ${\mu}g/L$) mine areas. Arsenic concentrations in stream waters from the Dongil ($0.9\~118{\mu}g/L$), the Songchon ($0.8\~63{\mu}g/L$), the Ssangjeon ($1.6\~109{\mu}g/L$) and the Gubong ($3.6\~63{\mu}g/L$) mine areas exceeded the permissible level for stream water in Korea. Groundwaters collected from the Dongil ($0.9\~64{\mu}g/L$ ), the Okdong ($0.2\~69{\mu}g/L$) and the Gubong ($0.5\~101{\mu}g/L$) mine areas contained high As concentration to cause the arsenicosis in these areas. In As speciation, the concentration ratios of As(III) to As(total) present up to $75\%$ and $100\%$ in stream waters from the Okdong and the Songcheon mines, and $70\%$ in groundwaters from the Okdong and the Dongjung mines. Arsenic concentration decreases downstream from the tailing dump correlatively with pH and Fe concentration. Highly elevated As concentrations are found in the dry season (such as April and March) than in the wet season (September) due to the dilution effect by heavy rain during summer in stream waters from the Dongil and the Songcheon mine areas.

  • PDF

Gastric juice and Realgar and Orpiment Mineral Medicine Reaction; Reaction Path and Speciation Modeling in Human Body (웅황과 자황의 소화 반응과 인체내 존재형태에 대한 예측 모델링)

  • Kim Sun Ok;Park Maeng Eon;Shin Soon Shik;Kim Gyeang Cheol
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.16 no.2
    • /
    • pp.365-372
    • /
    • 2002
  • The mineral medicines mean a sort of mineral or rock for medical treatment and natural material using their chemical components and physical properties. In this study, it was apprehended the mineralogical characteristics of As-bearing group mineral medicines. The extraction test is an vitro test system for predicting the bioavailability of the major and minor elements from mineral medicines and incorporates gastrointestinal tract parameters representative of a human(including stomach and small intestinal pH, stomach mixing time and velocity). The results of the extraction test are used for reaction path modeling in human body. Reaction path modeling in human body can predict digestion with gastric juice as well as bioavailability, speciation. Also, it can predict accumulation of arsenic as pH condition. As the results of the extraction test for digestion, the amounts of Fe extraction was the highest, followed by As, Ca, Ni. In addition, as the results of the reaction path modeling between arsenic compounds and gastric juice using thermodynamic data, when absorbed, major species are followed by H₃As₃S/sub 6/(aq), As₃S/sub 6/ (aq), AsO/sup +/, H₂As₃S/sup 6-/, H₂AsO/sup 3-/, HAs₃S6/sup 2-/, HAsO/sub 3//sup 2-/ and AsO/sub 3//sup 3-/. Specifically the concentration of H₃As₃S/sub 6/(aq) is the highest. As pH increases, the concentration of H₂AsO/sup 3-/, HAsO/sub 3//sup 2-/, HAsO/sub 3//sup 3-/, HAs₃S/sub 6//sup 2-/, H₂As₃S/sup 6-/, and H₃As₃S/sub 6/ increases, whereas the concentration of H₃As₃S/sub 6/ and AsO/sup +/ decreases. On the results of this study, it is able to find out effective and toxic components of poisonous arsenic group of mineral medicines and expected to be widely used for the development of new medicines.

Relationships between Speciation of Heavy Metals in Soil and Water Dropwort (Oenanthe javanica DC.) Cultivated near Industrial Complex (토양내 중금속 존재형태와 미나리중 함량과의 관계)

  • Jung, Goo-Bok;Kim, Won-Il;Lee, Jong-Sik;Kim, Jin-Ho;Lee, Jeong-Taek
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.40 no.2
    • /
    • pp.164-171
    • /
    • 2007
  • This experiment was conducted to investigate heavy metal speciation and bioavailability from soil to the edible parts of water dropwort near industrial complex. The soils and water dropwort were collected from the paddies cultivating water dropwort(10 sites), stream sediments(5 sites), and background soils(3 sites) near industrial complex. The total concentrations of Cd Cu, and Ni were higher than those of permissible level for soil contamination(Cd 3, Cu 100, Ni $50mg\;kg^{-1}$ in soil) suggested by Kloke(1979). Dominant chemical forms of Cd in paddies cultivating water dropwort and stream sediments were exchangeable form(49.1-56.3%), and those of Cu, Zn, and Ni were Fe and Mn oxide bound and residual forms. The mobility factor of heavy metals in paddies cultivating water dropwort and stream sediments was in the order Cd>Zn>Ni>Cu>Pb, specially, the mobility factor of Cd (62-72%) were relatively higher than that of other metals in soils. The total concentrations of Cd in soils showed significant positive correlation with the ratios of exchangeable and Fe and Mn oxide bound forms, while correlated negatively with residual form. Heavy metal contents in root parts were higher than those in top parts of water dropwort. The bioavailability of water dropwort varied considerably between the different parts and heavy metals. Cd, Cu and Ni contents in water dropwort were correlated with each fractions in soils. Specially, the exchangeable form of Cd and Ni in soils showed significant positive correlation with the those contents of water dropwort.

Influence of Vetiver Grass (Vetiveria zizanioides) on Rhizosphere Chemistry in Long-term Contaminated Soils (중금속으로 오염된 토양에서 근권부의 화학적 특성에 미치는 vetiver grass (Vetiveria zizianioides)의 영향)

  • Kim, Kwon-Rae;Owens, Gary;Naidu, Ravi;Kim, Kye-Hoon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.41 no.1
    • /
    • pp.55-64
    • /
    • 2008
  • A detailed understanding and appreciation of the important mechanisms operating at the soil:root interface, commonly identified as the rhizosphere, is critical for evaluating the potential for particular plant species to be successfully used as part of a phytoremediation technique. For specific plants, mechanisms may exist to overcome the inherit limitation of the phytoremediation technique when poorly mobile soil metals are of interest. In the present study, the influence of root exudates on the rhizosphere chemistry of soil and consequential metal uptake were investigated following culture of vetiver grass (Vetiveria zizanioides), recognized as a promising plant for land stabilization, in three different long-term contaminated soils and one non-contaminated control soil. The soil solution pH increased (0.3-1.1 units) following vetiver grass culture and dissolved organic carbon (DOC) also significantly increased in all soils with the highest increase in PP02 (23 to $173mg\;L^{-1}$). Chemical changes are contributed to root exudation by vetiver grass when exposed to high concentration of heavy metals. Chemical changes, consequently, influenced metal (Cd, Cu, Pb, and Zn) solubility and speciation in the rhizosphere. The highest solubility was observed for soil Ko01 (eg. 2091 and $318{\mu}g\;L^{-1}$ for Cd and Pb, respectively). Initial heavy metal solubility in soils varied with soil and either increased or decreased following vetiver grass culture depending on the soil type. An increase in pH following plant culture generally resulted in a decrease in metal solubility, while elevated DOC due to root exudation resulted in an increase in metal solubility via the formation of metal-DOC complexes. Donnan speciation demonstrated a significant decrease in free Cd and Zn in the rhizosphere and the concentration of Cd, Pb, and Zn in vetiver grass shoot was highly correlated with soluble concentration rather than total soil metal concentration.

Heavy Metal Concentrations in Soils and Stream around the Abandoned Mine Land (폐광산 주변 토양 및 하천의 중금속 함량)

  • 전관수;이철희;원양수;정진욱;박병삼;신덕구
    • Journal of Environmental Science International
    • /
    • v.8 no.2
    • /
    • pp.197-204
    • /
    • 1999
  • The extent of heavy metal pollution in agricultural in soils near the abandoned mine land site was investigated using their concentrations from the 47 sampling sites in B mine. Samples were prepared using 0.1N HCI - Korean Standard Methods - and then analysed for Cd, Cu, Pb, As and Cr by Inductively Coupled Plasma Spectrometer. In addition, soil and mine tailing samples were sequentially extracted to investigate the chemical speciation of heavy metals in them. The soils in the vicinity of mining area are highly contaminated by heavy metals ranging up to 5.96mg Cd/kg, 253.3mg Cu/kg, 76.7mg Pb/kg, and 15.45 mg As/kg, according to the analysis of Korean Standard Methods. The heavy metal levels by the sequential extraction are much higher than its level by Korean Standard Methods, and little correlated with each other. Based on the results, it is suggested that the As pollution in agricultural soils near the AMLS should be dealt as of prior significance in establishing reclamation strategies for the area.

  • PDF

Simulating Bioremediation of Uranium-Contaminated Aquifers

  • ;Peter R. Jaffe
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2002.09a
    • /
    • pp.161-166
    • /
    • 2002
  • Bioremediation of trace metals in groundwater may require the manipulation of redox conditions via the injection of a carbon source. To simulate the numerous biogeochemical processes that will occur during the bioremediation of trace-metal-contaminated aquifers, a reactive transport model has been developed. The model consists of a set of coupled mass balance equations, accounting for advection, hydrodynamic dispersion, and a kinetic formulation of the biological or chemical transformations affecting an organic substrate, electron acceptors, corresponding reduced species, and trace metal contaminants of interest, uranium in this study. The redox conditions of the domain are characterized by estimating the pE, based on the concentrations of the dominant terminal electron acceptor and its corresponding reduced specie. This pE and the concentrations of relevant species we then used by a modified version of MINTEQA2, which calculates the speciation/sorption and precipitation/dissolution of the species of interest under equilibrium conditions. Kinetics of precipitation/dissolution processes are described as being proportional to the difference between the actual and calculated equilibrium concentration.

  • PDF