• Title/Summary/Keyword: Chemical Recycling

Search Result 969, Processing Time 0.028 seconds

Recycling of Polyurethane Scraps (폴리우레탄 스크랩의 재활용)

  • Kim, Han-Na;Lee, Dai-Soo
    • Elastomers and Composites
    • /
    • v.47 no.2
    • /
    • pp.104-110
    • /
    • 2012
  • Depending on the states of polyurethane scraps generated in the production sites of polyurethane or recycling center of polyurethane scraps, appropriate recycling technologies can be employed for the recycling of resources. In this study, recycling technologies for the polyurethane scraps were classified into physical recycling, chemical recycling, and energy recycling and reports in the literatures were discussed.

Pilot Study on the Manufacture of Kraft Paper from OCC

  • Cho, Byoung-Uk;Ryu, Jeong-Yong;Song, Bong-Keun
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.40 no.5
    • /
    • pp.27-35
    • /
    • 2008
  • In order to determine the most appropriate recycling line to treat old corrugated container (OCC) to substitute unbleached kraft pulp (UKP) for the manufacture of kraft paper, three recycling lines were evaluated in pilot scale tests. The recycling line consisting of kneading, flotation, washing, dispersion and screening steps was able to produce pulp with acceptable appearance. Kneading was shown to be more efficient treatment to reduce specks than dispersion. In addition, 0.2 mm slot screen was very effective to remove specks. Severe damages on fiber morphology such as shortening of fiber and formation of fines were not observed during mechanical treatments such as kneading and dispersion. Most of strength properties of the kraft paper produced with the recycled pulp were found to be slightly increased after treated in the recycling lines.

Status and Strategy on Recycling of Domestic Used Chemical Catalysts (국내 사용 후 화학촉매제품의 재자원화 현황 및 향후 방향)

  • Kim, Young-Chun;Kang, Hong-Yoon
    • Resources Recycling
    • /
    • v.26 no.3
    • /
    • pp.3-16
    • /
    • 2017
  • Chemical catalyst products are applied to various fields such as petrochemical process, air pollution prevention facility and automobile exhaust gas purifier. The domestic and overseas chemical catalyst market is increasing every year, and the amount of waste catalyst generated thereby is also increasing. Most of the used chemical catalyst products, such as desulfurized waste catalysts and automobile waste catalysts containing valuable metals are important recyclable resources from a substitute resource point of view. The recycling processes for recovering valuable metals have been commercialized through some urban mining companies, and SCR denitration catalysts have been recycled through some remanufacturing companies. In this paper, the amount of domestic production and recycling of major catalyst products have thus been investigated and analyzed so as to be used as basic data for establishing industrial support policy for recycling of used chemical catalyst products. Also tasks for promoting the recycling of used chemical catalyst products are suggested.

Waste LED Recycling: Status and Prospects (LED 폐자원 재활용: 현황과 향후 방향)

  • Duk-Hee Lee;Hyeon-Kyung Oh;Kyung-Soo Park
    • Resources Recycling
    • /
    • v.33 no.1
    • /
    • pp.3-14
    • /
    • 2024
  • Owing to technological advancements and energy-saving policies, the demand for LED is increasing, leading to rapid industry expansion. Consequently, efficient recycling of accumulated LED waste has become a growing social concern, and current recycling status of LED waste resources and future directions were reviewed. Currently, waste LED recycling is focused on Ga recovery. Therefore, the development of integrated recycling technologies such as pre-treatment and concentration/recovery of high valued materials is necessary. In this study, we investigated the status and recycling technologies of waste LED and presented prospects.

Domestic Trends in Thermochemical Recycling Technology of Waste Plastics (폐플라스틱의 열화학적 재활용 기술 국내 동향)

  • Seon Ah Roh;Tai jin Min;Jin-Tae Kim;Bangwoo Han
    • Resources Recycling
    • /
    • v.32 no.6
    • /
    • pp.79-89
    • /
    • 2023
  • One of the foremost environmental challenges, alongside the contemporary focus on achieving carbon neutrality, pertains to the pervasive issue of plastic waste. Thermochemical recycling technology, operating under high-temperature conditions to covert organic matter and recycle it into raw materials and energy, represents a transformative approach surpassing the conventional bounds of material recycling predominantly applied in plastic waste management. The thermochemical recycling paradigm is emerging as a pivotal technology within the circular economy, capable of transforming waste plastics into raw materials for producing original plastics. Its significance extends beyond national borders, garnering global attention due to its versatility as a chemical or energy recycling method, contingent upon the subsequent processes and final products. This study aims to scrutinize three quintessential thermochemical recycling technologies: combustion, gasification, and pyrolysis. Furthermore, the study discusses the recent major technology trends of these technologies.

Trend for Waste Plastic Recycling Technology by Patent Analysis (특허분석(特許分析)에 의한 폐플라스틱 재활용(再活用) 기술(技術) 동향(動向))

  • Kim, Tae-Hyun;Rhee, Kang-In;Kim, Yu-Ri
    • Resources Recycling
    • /
    • v.19 no.2
    • /
    • pp.63-72
    • /
    • 2010
  • The patents were searched to investigate the trend of recycling technologies about plastic waste. Database was collected from WIPS site and the range of the search was limited to patents opened in U.S.A (US), European Union (EU), Japan (JP) and Korea (KR) to september 2009. In this paper, 4,795 patents were selected by investigation abstracts and the trend of the recycling technologies relating to waste plastic were investigated through the analyzing by the years, countries, companies. The patents were occupied 65% by Japan and the most of the patents were about chemical recycling. In the case of Korea, material recycling was major in the patents of waste plastic recycling.

Universal Plasma-chemical Module for Carbon-containing Raw Materials Treatment

  • Park, Hyun-Seo;Zasypkin, I.M.
    • Resources Recycling
    • /
    • v.13 no.1
    • /
    • pp.59-67
    • /
    • 2004
  • A universal plasma-chemical module (PChM) for the industrial processing of different hydrocarbon raw material pyrolysis was designed and tested. Laboratory investigations for the plasma-chemical method of acetylene production from natural gas and different coals were made. Similar laboratory tests on the industrial production of acetylene as a raw material for organic syn-thesis were developed using the PChM. A comparison of the suggested plasma-chemical method with the traditional process of acetylene production were carried out. The outlook of the plasma-chemical method was shown.