• 제목/요약/키워드: Chemical Reactor

검색결과 1,549건 처리시간 0.023초

Empirical relationship between band gap and synthesis parameters of chemical vapor deposition-synthesized multiwalled carbon nanotubes

  • Obasogie, Oyema E.;Abdulkareem, Ambali S.;Mohammed, Is'haq A.;Bankole, Mercy T.;Tijani, Jimoh. O.;Abubakre, Oladiran K.
    • Carbon letters
    • /
    • 제28권
    • /
    • pp.72-80
    • /
    • 2018
  • In this study, an empirical relationship between the energy band gap of multi-walled carbon nanotubes (MWCNTs) and synthesis parameters in a chemical vapor deposition (CVD) reactor using factorial design of experiment was established. A bimetallic (Fe-Ni) catalyst supported on $CaCO_3$ was synthesized via wet impregnation technique and used for MWCNT growth. The effects of synthesis parameters such as temperature, time, acetylene flow rate, and argon carrier gas flow rate on the MWCNTs energy gap, yield, and aspect ratio were investigated. The as-prepared supported bimetallic catalyst and the MWCNTs were characterized for their morphologies, microstructures, elemental composition, thermal profiles and surface areas by high-resolution scanning electron microscope, high resolution transmission electron microscope, energy dispersive X-ray spectroscopy, thermal gravimetry analysis and Brunauer-Emmett-Teller. A regression model was developed to establish the relationship between band gap energy, MWCNTs yield and aspect ratio. The results revealed that the optimum conditions to obtain high yield and quality MWCNTs of 159.9% were: temperature ($700^{\circ}C$), time (55 min), argon flow rate ($230.37mL\;min^{-1}$) and acetylene flow rate ($150mL\;min^{-1}$) respectively. The developed regression models demonstrated that the estimated values for the three response variables; energy gap, yield and aspect ratio, were 0.246 eV, 557.64 and 0.82. The regression models showed that the energy band gap, yield, and aspect ratio of the MWCNTs were largely influenced by the synthesis parameters and can be controlled in a CVD reactor.

슈퍼 듀플렉스 스테인리스강 UNS S32750의 FCA 다층 용접부의 용접 후 열처리 영향 (Heat Treatment Effect on Super Duplex Stainless Steel UNS S32750 FCA Multipass Welds)

  • 장복수;문인준;임명진;김세철;김수성;이정원;박해웅;고진현
    • Journal of Welding and Joining
    • /
    • 제32권2호
    • /
    • pp.48-53
    • /
    • 2014
  • This study was carried out to investigate the effect of postweld heat treatment(PWHT, 930, 1080, $1230^{\circ}C$) on the microstructure, phase formation, pitting corrosion and mechanical properties such as hardness, tensile strength and impact values of super duplex stainless steel(UNS S32750) multipass welds. Based on the microstructural examination and X-ray diffraction analysis, it was found that the ${\sigma}$ phase was formed in the welds heat treated at $930^{\circ}C$ in which the ferrite content greatly decreased into 5~10% in the welds. The secondary austenite was formed in the reheated zone of welds and redissolved into ferrite with increasing heat treatment temperatures. The tensile strength and impact values of welds heat treated at $930^{\circ}C$ were the lowest and revealed the brittle fracture surface. The weight loss by pitting corrosion increased with test temperatures. It was confirmed that pitting corrosion occurred mainly in secondary austenite of reheated zones. The postweld heat treatment temperature is recommended to be in the range of $1050{\sim}1150^{\circ}C$.

Dimethyl methylphosphonate(DMMP)의 초임계수 산화반응 (Supercritical water oxidation of Dimethyl methylphosphonate(DMMP))

  • 이해완;류삼곤;이종철;홍대식
    • Korean Chemical Engineering Research
    • /
    • 제44권6호
    • /
    • pp.636-643
    • /
    • 2006
  • 연속식 SCWO 반응기를 이용하여 DMMP의 초임계수 산화반응을 반응온도 $440{\sim}540^{\circ}C$, 반응압력 242 bar, 체류시간 10~26 초, 과잉산소량 -40~200%의 조건 하에서 수행하였다. 반응온도 $540^{\circ}C$에서 DMMP 분해율은 99.7% 이상으로 높았으며, DMMP의 농도가 증가함에 따라 DMMP 분해율은 증가하였다. 산화제 농도 변화에 따른 분해율은 양론비 이하에서는 현저하게 영향을 받았으나, 양론비 이상에서는 큰 차이가 없었다. DMMP 분해율이 85% 이상인 30개의 실험결과로부터 DMMP의 초임계수 산화반응 속도식을 도출하였다. Pre-exponential factor는 $(1.10{\pm}0.76){\times}10^6$, 반응 활성화에너지는 $90.66{\pm}3.87kJ/mol$, DMMP와 산소에 대한 반응차수는 각각 $1.02{\pm}0.03$, $0.32{\pm}0.03$로 모델에 의한 예측값과 실험값은 잘 일치하였다.

Effect of Operational Parameters on the Products from Catalytic Pyrolysis of Date Seeds, Wheat Straw, and Corn Cob in Fixed Bed Reactor

  • Sultan Mahmood;Hafiz Miqdad Masood;Waqar Ali khan;Khurram Shahzad
    • Korean Chemical Engineering Research
    • /
    • 제61권4호
    • /
    • pp.591-597
    • /
    • 2023
  • Pakistan depends heavily on imports for its fuel requirements. In this experiment, catalytic pyrolysis of a blend of feedstock's consisting of date seed, wheat straw, and corn cob was conducted in a fixed bed reactor to produce oil that can be used as an alternative fuel. The main focus was to emphasize the outcome of important variables on the produced oil. The effects of operating conditions on the yield of bio-oil were studied by changing temperature (350-500 ℃), heating rate (10, 15, 20 ℃/min), and particle size (1, 2, 3 mm). Moreover, ZnO was used as a catalyst in the process. First, the thermal degradation of the feedstock was investigated by TGA and DTG analysis at 10 ℃/min of different particle sizes of 1, 2, and 3mm from a temperature range of 0 to 1000 ℃. The optimum temperature was found to be 450 ℃ for maximum degradation, and the oil yield was indicated to be around 37%. It was deduced from the experiment that the maximum production of bio-oil was 32.21% at a temperature of 450 ℃, a particle size of 1mm, and a heating rate of 15 ℃/min. When using the catalyst under the same operating conditions, the bio-oil production increased to 41.05%. The heating value of the produced oil was 22 MJ/kg compared to low-quality biodiesel oil, which could be used as a fuel.

Study on the Gas-Liquid Mixing Characteristics in Reactor System Using Ejector

  • Jin, Zhen-Hua;Utomo, Tony;Chung, Han-Shik;Jeong, Hyo-Min;Shin, You-Sik;Lee, Sang-Chul
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회B
    • /
    • pp.2708-2713
    • /
    • 2007
  • The aim of this paper is further studies to achieve deeper understanding in this field. First investigate the influence of operating conditions and design parameters on the hydrodynamics and the mass transfer properties of a loop reactor. This paper provides a literature review on the ejectors applications in the mixing system. A number of studies are grouped and discussed in several topics such as the background, theory of ejector, mixing characteristics, optimization of the system. Since the high efficiencies reactor using ejector widely used in gas-liquid system, especially in a number of chemical and biochemical processes. This is due to their high efficiency in gas dispersion resulting in high mass transfer rate and low power requirements. Thus ejector has been applied to the mixing system. An investigation on hydrodynamics and mass transfer characteristics of gas-liquid ejector has been carried out using three-dimensional CFD modeling.

  • PDF

유전가열물질을 코팅한 활성탄소섬유의 휘발성 유기화합물 흡착 및 마이크로파 인가에 의한 탈착 연구 (A Study on Adsorption of Volatile Organic Compound by Activated Carbon Fiber Coated with Dielectric Heating Element and Desorption by Applying Microwave)

  • 김상국;장예림
    • 한국대기환경학회지
    • /
    • 제25권2호
    • /
    • pp.122-132
    • /
    • 2009
  • Adsorption of toluene by activated carbon fiber (ACF) coated with dielectric heating element and desorption by applying microwave were investigated. In order to prepare adsorbent so that VOC can be desorbed by microwave heating, fine dielectric heating element with nano size was coated on the surface of the ACF using hybrid binder. Eight adsorbents (ACF-DHE, Activated Carbon Fiber coated with Dielectric Heating Element) were prepared with different amount of dielectric heating element, kinds of hybrid binder, and solvent. In order to investigate adsorption characteristics, BET surface area, pore volume, and average pore size were measured for each adsorbent including ACF. Breakthrough experiments with toluene concentration, flow rate, bed length using fixed bed reactor were performed to investigate adsorbality of adsorbent, and results were compared with that of the ACF. Desorption reactor was constructed with modified microwave oven to investigate heating effect on ACF-DHE by applying microwave power. Each adsorbent saturated with toluene were put into desorption reactor. Composition of desorbed gas generated by applying controlled microwave power to reactor was measured. Up to now, hot air desorption method has been used. Experimental results showed that desorption method with new adsorbent prepared by coating dielectric heating element on ACF can be used for industrial application.

생물막 담체를 이용한 실험실 규모 $A_{2}O$공법의 시스템 변형에 따른 고도처리 성능 평가에 관한 연구 (The Study on Evaluating Performances of Lab Sacle-Advanced $A_{2}O$ with Changing System Using Biofilm Process)

  • 김민식;강구영
    • 상하수도학회지
    • /
    • 제26권2호
    • /
    • pp.209-218
    • /
    • 2012
  • Recently, as reinforced water quality standards for wastewater has been announced, more efficient and more powerful wastewater treatment processes are required rather than the existing activated sludge process. In order to meet this demands, we evaluate Task 1-4 about lab scale $A_{2}O$ process using biofilm media. Task 1, 2, and 3 use 'Module A' which has 4 partitions (Anoxic/Anerobic/Oxic/Oxic). Task 4 uses 'Module B' which has 2 partitions including a denitrification reactor with an Inclined plug flow reactor (IPFR) and a nitrification reactor with biofilm media. The denitrification reactor of Module B is designed to be upward flow using IPFR. The result of evaluating at each Task has shown that attached growth system has better capacity of removal efficiency for organic matter and nitrogen with the exception of phosphorus. Task 4 which has the most outstanding removal efficiency has 90.5% of $BOD_{5}$ removal efficiency, 97.8% of ${NH_4}^{+}-N$ removal efficiency, 65% of T-N removal efficiency and 92% of T-P removal efficiency with additional chemical phosphorus removal system operated at HRT 9hr, Qi:Qir 1:2, and BOD/T-N ratio 2.7.

Multimax Reactor System을 이용한 시멘트 혼화제 제조시 에스테르화공정의 열적 위험성 평가 (Assessment of Thermal Hazard on Esterification Process in Manufacture of Concrete Mixture Agents by Multimax Reactor System)

  • 한인수;이근원;표돈영
    • 한국안전학회지
    • /
    • 제24권5호
    • /
    • pp.13-20
    • /
    • 2009
  • The risk assessment of thermal hazard to identify chemical or process hazard during early process developments have been considered. The early identification of thermal hazards associated with a process, such as rapid heats of reaction, exothermic decompositions, and the potential for thermal runaways before any large scale operations are undertaken. This paper presents to evaluate the safe operating parameters/envelope for exist plant operations. The assessment of thermal hazard with operating conditions such as amount of process materials, inhibitor, and catalyst on esterification process in manufacture of concrete mixture agents are described. The experiments were performed by a sort of calorimetry with the Multimax reactor system as a screening tool. The aim of the study was to evaluate the thermal risk of process material and mixture in terms of safety security to be practical applications in esterification process. It suggested that we should provide the thermal hazard of reaction materials to present safe operating conditions with cause of accident through this study.

TREATMENT OF FOODWASTE AND POSPHORUS REMOVAL USING STRUVITE CRYSTALLIZATION IN HYBRID ANAEROBIC REACTOR WITH SAC MEDIA

  • Park, In-Chul;Kim, Dong-Su;Kim, Sung-Man;Lee, Jung-Jun
    • 한국자원리싸이클링학회:학술대회논문집
    • /
    • 한국자원리싸이클링학회 2001년도 정기총회 특별강연 및 춘계학술연구발표회(2)
    • /
    • pp.129-132
    • /
    • 2001
  • The purpose of this research was to understand possibility of foodwaste treatment by hybrid anaerobic reactor(HAR). The Possibility of methane utility and applicability of hybrid reactor system using foodwaste as substrate was investigated. The maximum loading rate and optimized operational conditions were determined. Hybrid anaerobic reactor was filled with packing material 50% of its total volume between the tube and the outer surface. The packing material used was randomly packed open-pore synthesis activated ceramic(SAC) media as support media for microbial attachment, growth, and chemical stability protected bacteria from effect of organic acid accumulation. In this research, although foodwaste has high concentrations C $l^{[-10]}$ and S $O_{4}$$^{2-}$ concentration the possibility of foodwaste anaerobic treatment was when foodwaste is treated by anaerobic digestion, this study focused on the possibility using C $H_4$ gas made under the anaerobic treatment as an alternative energy source. Other objective of this research is to study struvite formation and crystal forms in anaerobic digester. HAR is used to investigate phosphate crystallization without the addition of chemicals.

  • PDF

Specimen Geometry Effects on Oxidation Behavior of Nuclear Graphite

  • Cho, Kwang-Youn;Kim, Kyung-Ja;Lim, Yun-Soo;Chung, Yun-Joong;Chi, Se-Hwan
    • Carbon letters
    • /
    • 제7권3호
    • /
    • pp.196-200
    • /
    • 2006
  • Graphite has hexagonal closed packing structure with two bonding characteristics of van der Waals bonding between the carbon layers at c axis, and covalent bonding in the carbon layer at a and b axis. Graphite has high tolerant to the extreme conditions of high temperature and neutron irradiations rather than any other materials of metals and ceramics. However, carbon elements easily react with oxygen at as low as 400C. Considering the increasing production of today of hydrogen and electricity with a nuclear reactor, study of oxidation characteristics of graphite is very important, and essential for the life evaluation and design of the nuclear reactor. Since the oxidation behaviors of graphite are dependent on the shapes of testing specimen, critical care is required for evaluation of nuclear reactor graphite materials. In this work, oxidation rate and amounts of the isotropic graphite (IG-110, Toyo Carbon), currently being used for the Koran nuclear reactor, are investigated at various temperature. Oxidation process or principle of graphite was figured out by measuring the oxidation rate, and relation between oxidation rate and sample shape are understood. In the oxidation process, shape effect of volume, surface area, and surface to volume ratio are investigated at $600^{\circ}C$, based on the sample of ASTM C 1179-91.

  • PDF