• Title/Summary/Keyword: Chemical Reactor

Search Result 1,551, Processing Time 0.022 seconds

Synthesis of Diamond-Like Carbon Films by R.F.Plasma CVD (고주파플라즈마 CVD법에 의한 다이아몬드상 탄소박막의 합성)

  • 박상현;이덕출
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.39 no.10
    • /
    • pp.1037-1043
    • /
    • 1990
  • Diamond thin films were synthesized from the mixed gases of methane and hydrogen on silicon substrates by RF plasma chemical vapor deposition and deposited films were investigated by SEM, X-ray diffractometry and Raman spectroscopy. It is found that high quality diamond-like carbon films were successfully synthesized by PECVD under the deposition condition of 1-10 vol% of methane concentration, 0.15-0.4torr of reactor pressure, 500W of RF power, and 5-20hr of reaction time. Especially, cubo-octahedral diamond-like carbon particles were synthesized by employing 1.0 vol % of methane concentration and 0.4torr of the reactor pressure.

  • PDF

The Study of Nuclear Reactor Pressure Vessel Steel SA508Gr.3 Mechanical Properties and Temper-Parameter (원자력 압력용기용강 SA508Gr.3의 기계적 특성과 템퍼 파라메타에 관한 연구)

  • Kim, Byoung-Ok;Lee, Oh-Yeon
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.25 no.3
    • /
    • pp.121-125
    • /
    • 2012
  • The large forgings used in chemical plants or nuclear power plants are produced by complex heat treatment. because of thickness up to 200~300 mm and weight up to 200~300 ton, setting proper heat treatment cycle is so difficult. In addition, defects of products make companies wasting large money and valuable time. In this study, to reduce try & err, when setting heat treatment of reactor pressure vessel steel SA508Gr.3, carrying out the basic mechanical property test of SA508 Gr.3 and testing hardness of SA508Gr.3 in various tempering temperature. and calculating temper curve with Hollomon-Jaffe parameter.

Adsoption Removal of PCBs by Activated Carbon (활성탄에 의한 PCBs의 흡착제거)

  • Yu, Yong-Ho;Lee, Jong-Jig
    • Journal of the Korean Society of Safety
    • /
    • v.21 no.1 s.73
    • /
    • pp.59-64
    • /
    • 2006
  • In this study, adsorption characteristics of PCBs on granular activated carbon were experimentally investigated in a batch reactor and in a fixed bed reactor. Granular activated carbon removed above 98.4% of initial concentration, 1000mg/L, of PCBs. It was estabilished that the adsorption equilibrium of PCBs on granular activated carbon was more successfully fitted by Freundlich isotherm equation in the concentration range from 1 to 1000mg/L. Because Freundlich parameter, ${\beta}$ is 0.346, removall treatment of PCBs by activated carbon accounts for the fact that toxicity reduction can be achieved through this process. Appearance time of breakthrough curve is faster with the increase flow rate and inflow concentration of liquid. The utility of granular activated carbon is enhanced with the increase of bed height and with the decrease of inflow rate.

Computer Modeling of the Power Generation System Using Polymer Electrolyte Fuel Cell (고분자 전해질형 연료전지 발전 시스템의 전산모사)

  • Baek, Young-Soon
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.19 no.5
    • /
    • pp.460-466
    • /
    • 2008
  • In this study, a computer modeling work has been performed for the power generation system using polymer electrolyte fuel cell with Aspen Plus general purpose chemical process simulator. Stoichiometric reactor module was used for the modeling of reformer for the production of hydrogen. For the modeling of the electrochemical reaction, Gibbs reactor module built-in Aspen Plus was utilized. SRK equation of state model was selected for the proper simulation of the overall fuel cell system.

DEVELOPMENT AND VALIDATION OF THE AEROSOL TRANSPORT MODULE GAMMA-FP FOR EVALUATING RADIOACTIVE FISSION PRODUCT SOURCE TERMS IN A VHTR

  • Yoon, Churl;Lim, Hong Sik
    • Nuclear Engineering and Technology
    • /
    • v.46 no.6
    • /
    • pp.825-836
    • /
    • 2014
  • Predicting radioactive fission product (FP) behaviors in the reactor coolant system and the containment of a nuclear power plant (NPP) is one of the major concerns in the field of reactor safety, since the amount of radioactive FP released into the environment during the postulated accident sequences is one of the major regulatory issues. Radioactive FPs circulating in the primary coolant loop and released into the containment are basically in the form of gas or aerosol. In this study, a multi-component and multi-sectional analysis module for aerosol fission products has been developed based on the MAEROS model [1,2], and the aerosol transport model has been developed and verified against an analytic solution. The deposition of aerosol FPs to the surrounding structural surfaces is modeled with recent research achievements. The developed aerosol analysis model has been successfully validated against the STORM SR-11 experimental data [3], which is International Standard Problem No. 40. Future studies include the development of the resuspension, growth, and chemical reaction models of aerosol fission products.

Influence of FA and FNA to Microbial Community in Sequencing Batch Ammonium Partial Nitrification System (암모니아 부분산화 공정의 제어와 미생물 군집의 변화)

  • Ahn, Johwan
    • Journal of Korean Society on Water Environment
    • /
    • v.31 no.4
    • /
    • pp.399-406
    • /
    • 2015
  • A sequencing batch reactor was operated under different pH conditions to see the influence of free ammonia (FA) and free nitrous acid (FNA) to microbial community on ammonium partial nitrification. Long-term influences of FA and FNA were evaluated by polymerase chain reaction-denaturing gradient gel electrophoresis and fluorescence in situ hybridization. Nitrite accumulation was successfully achieved at pH 8.2 and 6.3. The shifts in the microbial community were observed when influent ammonia concentration increased to 1 g $NH_4$-N/L at pH 8.2, and then when pH was dropped to 6.3. Both Nitrosomonas and Nitrosospira were selected during the startup of the reactor, and eventually became dominant members as ammonia-oxidizing bacteria. The results of molecular microbiological analysis strongly suggested that the composition of microbial community was changed according to the method used to control nitrite-oxidizing bacteria.

A Kinetic Study on the Photocatalytic Degradation of Gas-Phase VOCs Using TiO$_2$ photocatalyst

  • Kim, Sang-Bum;Jo, Young-Min;Hong, Sung-Chang
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.17 no.E3
    • /
    • pp.117-124
    • /
    • 2001
  • The present paper examined the kinetics of photocatalytic degradation of volatile organic compounds (VOCs) including gaseous trichloroethylene (TCE) and acetone. In this study, we examined the effects of the initial concentration of VOCs and the light intensity of ultra-violet (UV). A batch photo-reactor was specifically designed for this work. The photocatalytic degradation rate increased with the initial concentration of VOCs but remained almost constant beyond a certain concentration. It matched well with the Langmuir-Hinshelwood (L-H) kinetic model. When the effect of light intensity was concerned, it was found that photocatalytic degradation occurs in two regimes with respect to light intensity.

  • PDF

Elastic High-temperature Structural Analysis on the Small Scale PHE Prototype Considering the Pipeline Stiffness (배관 강성을 고려한 소형 공정열교환기 시제품에 대한 탄성 고온구조해석)

  • Song, Kee-nam;Kang, J-H;Hong, S-D;Park, H-Y
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.7 no.3
    • /
    • pp.48-53
    • /
    • 2011
  • A PHE (Process Heat Exchanger) is a key component required to transfer heat energy of $950^{\circ}C$ generated in a VHTR (Very High Temperature Reactor) to the chemical reaction that yields a large quantity of hydrogen. A small-scale PHE prototype made of Hastelloy-X is being tested in a small-scale gas loop at Korea Atomic Energy Research Institute. In this study, as a part of the evaluation on the high-temperature structural integrity of the small-scale PHE prototype, we carried out macroscopic high-temperature structural analysis of the small-scale PHE prototype under the gas loop test conditions considering the pipeline stiffness.

Design of a Voting Mechanism considering Safety for NMR PPC Using EPLD and Reliability Analysis (EPLD를 이용한 안전성이 고려된 NMR PPC의 보팅메카니즘 설계와 신뢰도 분석)

  • Ryoo, Dong-Wan;Park, Heui-Youn;Koo, In-Soo;Seo, Bo-Hyeok
    • Proceedings of the KIEE Conference
    • /
    • 2000.07d
    • /
    • pp.2557-2560
    • /
    • 2000
  • The protection system of the nuclear reactor and chemical reactor are representative of PPC(Plant Protection Controller). This PPC must be designed based on reliability as well as concept of safety, which is a failed system go a way of safe. PPC is consist of part of data acquisition, calculator, communication with redundancy, and a voter is important factor of reliability. Because it is serial connected. This paper presents a Design and Analysis of a Voting Mechanism considering Safety for NMR PPC Using EPLD. In the case of digital implementation a coincidence logic(voter) of PPC, it needs CPU and memory, so increase a number of units. Therefore the failure rate and cost is increased. On the contrary when it is designed EPLD or FPGA.

  • PDF

MULTI-DIMENSIONAL APPROACHES IN SEVERE ACCIDENT MODELLING AND ANALYSES

  • Fichot, F.;Marchand, O.;Drai, P.;Chatelard, P.;Zabiego, M.;Fleurot, J.
    • Nuclear Engineering and Technology
    • /
    • v.38 no.8
    • /
    • pp.733-752
    • /
    • 2006
  • Severe accidents in PWRs are characterized by a continuously changing geometry of the core due to chemical reactions, melting and mechanical failure of the rods and other structures. These local variations of the porosity and other parameters lead to multi-dimensionnal flows and heat transfers. In this paper, a comprehensive set of multi-dimensionnal models describing heat transfers, thermal-hydraulics and melt relocation in a reactor vessel is presented. Those models are suitable for the core description during a severe accident transient. A series of applications at the reactor scale shows the benefits of using such models.