• Title/Summary/Keyword: Chemical Processes

Search Result 2,830, Processing Time 0.033 seconds

Lithologic and Structural Controls and Geochemistry of Uranium Deposition in the Ogcheon Black-Slate Formation (옥천대(沃川帶) 우라늄광층(鑛層)의 구조규제(構造規制) 및 지구화학적(地球化學的) 특성연구(特性硏究))

  • Lee, Dai Sung;Yun, Suckew;Lee, Jong Hyeog;Kim, Jeong Taeg
    • Economic and Environmental Geology
    • /
    • v.19 no.spc
    • /
    • pp.19-41
    • /
    • 1986
  • Structural, radioactive, petrological, petrochemical, mineralogical and stable isotopic study as well as the review of previous studies of the uranium-bearing slates in the Ogcheon sequence were carried out to examine the lithological and structural controls, and geochemical environment in the uranium deposition in the sequence. And the study was extended to the coal-bearing formation (Jangseong Series-Permian) to compare the geochemical and sedimentologic aspects of uranium chemistry between Ogcheon and Hambaegsan areas. The results obtained are as follows: 1. The uranium mineralization occurs in the carbonaceous black slates of the middle to lower Guryongsan formation and its equivalents in the Ogcheon sequence. In general, two or three uranium-bearing carbonaceous beds are found with about 1 to 1.5km stratigraphic interval and they extend from Chungju to Jinsan for 90km in distance, with intermittent igneous intrusions and structural Jisturbances. Average thickness of the beds ranges from 20 to 1,500m. 2. These carbonaceous slate beds were folded by a strong $F_1$-fold and were refolded by subsequent $F_1$-fold, nearly co-axial with the $F_1$, resulting in a repeated occurrence of similar slate. The carbonaceous beds were swelled in hing zones and were shrinked or thined out in limb by the these foldings. Minor faulting and brecciation of the carbonaceous beds were followed causing metamorphism of these beds and secondary migration and alteration of uranium minerals and their close associations. 3. Uranium-rich zones with high radioactive anomalies are found in Chungju, Deogpyong-Yongyuri, MiwonBoun, Daejeon-Geumsan areas in the range of 500~3,700 cps (corresponds to 0.017~0.087%U). These zones continue along strike of the beds for several tens to a few hundred meters but also discontinue with swelling and pinches at places that should be analogously developed toward underground in their vertical extentions. The drilling surveyings in those area, more than 120 holes, indicate that the depth-frequency to uranium rich bed ranging 40~160 meter is greater. 4. The features that higher radioactive anomalies occur particularly from the carbonaceous beds among the argillaceous lithologic units, are well demonstrated on the cross sections of the lithology and radioactive values of the major uranium deposits in the Ogcheon zone. However, one anomalous radioactive zone is found in a l:ornfels bed in Samgoe, near Daejeon city. This is interpreted as a thermal metamorphic effect by which original uranium contents in the underlying black slate were migrated into the hornfels bed. 5. Principal minerals of the uranium-bearing black slates are quartz, sericite, biotite and chlorite, and as to chemical composition of the black slates, $Al_2O_3$ contents appear to be much lower than the average values by its clarke suggesting that the Changri basin has rather proximal to its source area. 6. The uranium-bearing carbonaceous beds contain minor amounts of phosphorite minerals, pyrite, pyrrhotite and other sulfides but not contain iron oxides. Vanadium. Molybdenum, Barium, Nickel, Zirconium, Lead, Cromium and fixed Carbon, and some other heavy metals appear to be positive by correlative with uranium in their concentrations, suggesting a possibility of their genetic relationships. The estimated pH and Eh of the slate suggests an euxenic marine to organic-rich saline water environment during uranium was deposited in the middle part of Ogcheon zone. 7. The Carboniferous shale of Jangseong Series(Sadong Series) of Permian in Hambaegsan area having low radioactivity and in fluvial to beach deposits is entirely different in geochemical property and depositional environment from the middle part of Ogcheon zone, so-called "Pibanryong-Type Ogcheon Zone". 8. Synthesizing various data obtained by several aspects of research on uranium mineralization in the studied sequence, it is concluded that the processes of uranium deposition were incorporated with rich organic precipitation by which soluble uranyl ions, $U{_2}^{+{+}}$ were organochemically complexed and carried down to the pre-Ogcheon sea bottoms formed in transitional environment, from Red Sea type basin to Black Sea type basin. Decomposition of the organic matter under reducing conditions to hydrogen sulfide, which reduced the $UO{_2}^{+2}$ ions to the insoluble uranium dioxide($UO_2$), on the other side the heavy metals are precipitated as sulfides. 9. The EPMA study on the identification of uraninite and others and the genetic interpretation of uranium bearing slates by isotopic values of this work are given separately by Yun, S. in 1984.

  • PDF

The Effect of Iron Content on the Atomic Structure of Alkali Silicate Glasses using Solid-state NMR Spectroscopy (비정질 알칼리 규산염 원자구조의 철 함량 효과에 관한 고체 NMR 분광학 연구)

  • Kim, Hyo-Im;Lee, Sung-Keun
    • Journal of the Mineralogical Society of Korea
    • /
    • v.24 no.4
    • /
    • pp.301-312
    • /
    • 2011
  • The study on the atomic structure of iron-bearing silicate glasses has significant geological implications for both diverse igneous processes on Earth surface and ultra-low velocity zones at the core-mantle boundary. Here, we report experimental results on the effect of iron content on the atomic structure in iron-bearing alkali silicate glasses ($Na_2O-Fe_2O_3-SiO_2$ glasses, up to 16.07 wt% $Fe_2O_3$) using $^{29}Si$ and $^{17}O$ solid-state NMR spectroscopy. $^{29}Si$ spin-lattice ($T_1$) relaxation time for the glasses decreases with increasing iron content due to an enhanced interaction between nuclear spin and unpaired electron in iron. $^{29}Si$ MAS NMR spectra for the glasses show a decrease in signal intensity and an increase in peak width with increasing iron content. However, the heterogeneous peak broa-dening in $^{29}Si$ MAS NMR spectra suggests the heterogeneous distribution of $Q^n$ species around iron in iron-bearing silicate glasses. While nonbridging oxygen ($Na-O-Si$) and bridging oxygen (Si-O-Si) peaks are partially resolved in $^{17}O$ MAS NMR spectrum for iron-free silicate glass, it is difficult to distinguish the oxygen clusters in iron-bearing silicate glass. The Lorentzian peak shape for $^{29}Si$ and $^{17}O$ MAS NMR spectra may reflect life-time broadening due to spin-electron interaction. These results demonstrate that solid-state NMR can be an effective probe of the detailed structure in iron-bearing silicate glasses.

Highly Doped Nano-crystal Embedded Polymorphous Silicon Thin Film Deposited by Using Neutral Beam Assisted CVD at Room Temperature

  • Jang, Jin-Nyeong;Lee, Dong-Hyeok;So, Hyeon-Uk;Hong, Mun-Pyo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.154-155
    • /
    • 2012
  • The promise of nano-crystalites (nc) as a technological material, for applications including display backplane, and solar cells, may ultimately depend on tailoring their behavior through doping and crystallinity. Impurities can strongly modify electronic and optical properties of bulk and nc semiconductors. Highly doped dopant also effect structural properties (both grain size, crystal fraction) of nc-Si thin film. As discussed in several literatures, P atoms or radicals have the tendency to reside on the surface of nc. The P-radical segregation on the nano-grain surfaces that called self-purification may reduce the possibility of new nucleation because of the five-coordination of P. In addition, the P doping levels of ${\sim}2{\times}10^{21}\;at/cm^3$ is the solubility limitation of P in Si; the solubility of nc thin film should be smaller. Therefore, the non-activated P tends to segregate on the grain boundaries and the surface of nc. These mechanisms could prevent new nucleation on the existing grain surface. Therefore, most researches shown that highly doped nc-thin film by using conventional PECVD deposition system tended to have low crystallinity, where the formation energy of nucleation should be higher than the nc surface in the intrinsic materials. If the deposition technology that can make highly doped and simultaneously highly crystallized nc at low temperature, it can lead processes of next generation flexible devices. Recently, we are developing a novel CVD technology with a neutral particle beam (NPB) source, named as neutral beam assisted CVD (NBaCVD), which controls the energy of incident neutral particles in the range of 1~300eV in order to enhance the atomic activation and crystalline of thin films at low temperatures. During the formation of the nc-/pm-Si thin films by the NBaCVD with various process conditions, NPB energy directly controlled by the reflector bias and effectively increased crystal fraction (~80%) by uniformly distributed nc grains with 3~10 nm size. In the case of phosphorous doped Si thin films, the doping efficiency also increased as increasing the reflector bias (i.e. increasing NPB energy). At 330V of reflector bias, activation energy of the doped nc-Si thin film reduced as low as 0.001 eV. This means dopants are fully occupied as substitutional site, even though the Si thin film has nano-sized grain structure. And activated dopant concentration is recorded as high as up to 1020 #/$cm^3$ at very low process temperature (< $80^{\circ}C$) process without any post annealing. Theoretical solubility for the higher dopant concentration in Si thin film for order of 1020 #/$cm^3$ can be done only high temperature process or post annealing over $650^{\circ}C$. In general, as decreasing the grain size, the dopant binding energy increases as ratio of 1 of diameter of grain and the dopant hardly be activated. The highly doped nc-Si thin film by low-temperature NBaCVD process had smaller average grain size under 10 nm (measured by GIWAXS, GISAXS and TEM analysis), but achieved very higher activation of phosphorous dopant; NB energy sufficiently transports its energy to doping and crystallization even though without supplying additional thermal energy. TEM image shows that incubation layer does not formed between nc-Si film and SiO2 under later and highly crystallized nc-Si film is constructed with uniformly distributed nano-grains in polymorphous tissues. The nucleation should be start at the first layer on the SiO2 later, but it hardly growth to be cone-shaped micro-size grains. The nc-grain evenly embedded pm-Si thin film can be formatted by competition of the nucleation and the crystal growing, which depend on the NPB energies. In the evaluation of the light soaking degradation of photoconductivity, while conventional intrinsic and n-type doped a-Si thin films appeared typical degradation of photoconductivity, all of the nc-Si thin films processed by the NBaCVD show only a few % of degradation of it. From FTIR and RAMAN spectra, the energetic hydrogen NB atoms passivate nano-grain boundaries during the NBaCVD process because of the high diffusivity and chemical potential of hydrogen atoms.

  • PDF

A Study on the Estimation of Monthly Average River Basin Evaporation (월(月) 평균유역증발산량(平均流域蒸發散量) 추정(推定)에 관(關)한 연구(硏究))

  • Kim, Tai Cheol;Ahn, Byoung Gi
    • Korean Journal of Agricultural Science
    • /
    • v.8 no.2
    • /
    • pp.195-202
    • /
    • 1981
  • The return of water to the atmosphere from water, soil and vegetation surface is one of the most important aspects of hydrological cycle, and the seasonal trend of variation of river basin evaporation is also meaningful in the longterm runoff analysis for the irrigation and water resources planning. This paper has been prepared to show some imformation to estimate the monthly river basin evaporation from pan evaporation, potential evaporation, regional evaporation and temperature through the comparison with river basin evaporation derived from water budget method. The analysis has been carried out with the observation data of Yongdam station in the Geum river basin for five year. The results are summarized as follows and these would be applied to the estimation of river basin evaporation and longterm runoff in ungaged station. 1. The ratio of pan evaporation to river basin evaporation ($E_w/E_{pan}$) shows the most- significant relation at the viewpoint of seasonal trend of variation. River basin evaporation could be estimated from the pan evaporation through either Fig. 9 or Table-7. 2. Local coefficients of cloudness effect and wind function has been determined to apply the Penman's mass and energy transfer equation to the estimation of river basin evaporation. $R_c=R_a(0.13+0.52n/D)$ $E=0.35(e_s-e)(1.8+1.0U)$ 3. It seems that Regional evaporation concept $E_R=(1-a)R_C-E_p$ has kept functional errors due to the inapplicable assumptions. But it is desirable that this kind of function which contains the results of complex physical, chemical and biological processes of river basin evaporation should be developed. 4. Monthly river basin evaporation could be approximately estimated from the monthly average temperature through either the equation of $E_w=1.44{\times}1.08^T$ or Fig. 12 in the stations with poor climatological observation data.

  • PDF

A Review Study on Major Factors Influencing Chlorine Disappearances in Water Storage Tanks (저수조 내 잔류염소 감소에 미치는 주요 영향 인자에 관한 문헌연구)

  • Noh, Yoorae;Kim, Sang-Hyo;Choi, Sung-Uk;Park, Joonhong
    • Journal of Korean Society of Disaster and Security
    • /
    • v.9 no.2
    • /
    • pp.63-75
    • /
    • 2016
  • For safe water supply, residual chlorine has to be maintained in tap-water above a certain level from drinking water treatment plants to the final tap-water end-point. However, according to the current literature, approximately 30-60% of residual chlorine is being lost during the whole water supply pathways. The losses of residual chlorine may have been attributed to the current tendency for water supply managers to reduce chlorine dosage in drinking water treatment plants, aqueous phase decomposition of residual chlorine in supply pipes, accelerated chlorine decomposition at a high temperature during summer, leakage or losses of residual chlorine from old water supply pipes, and disappearances of residual chlorine in water storage tanks. Because of these, it is difficult to rule out the possibility that residual chlorine concentrations become lower than a regulatory level. In addition, it is concerned that the regulatory satisfaction of residual chlorine in water storage tanks can not always be guaranteed by using the current design method in which only storage capacity and/or hydraulic retention time are simply used as design factors, without considering other physico-chemical processes involved in chlorine disappearances in water storage tank. To circumvent the limitations of the current design method, mathematical models for aqueous chlorine decomposition, sorption of chlorine into wall surface, and mass-transfer into air-phase via evaporation were selected from literature, and residual chlorine reduction behavior in water storage tanks was numerically simulated. The model simulation revealed that the major factors influencing residual chlorine disappearances in water storage tanks are the water quality (organic pollutant concentration) of tap-water entering into a storage tank, the hydraulic dispersion developed by inflow of tap-water into a water storage tank, and sorption capacity onto the wall of a water storage tank. The findings from his work provide useful information in developing novel design and technology for minimizing residual chlorine disappearances in water storage tanks.

The Waveform and Spectrum analysis of Tursiops truncatus (Bottlenose Dolphin) Sonar Signals on the Show at the Aquarium (쇼 학습시 병코돌고래 명음의 주파수 스펙트럼 분석)

  • 윤분도;신형일;이장욱;황두진;박태건
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.36 no.2
    • /
    • pp.117-125
    • /
    • 2000
  • The waveform and spectrum analysis of Tursiops truncatus(bottlenose dolphin) sonar signals were carried out on the basis of data collected during the dolphin show at the aquarium of Cheju Pacificland from October 1998 to February 1999. When greeting to audience, the pulse width, peak frequency and spectrum level from the five dolphins'sonar signals were 3.0ms, 4.54kHz and 125.6dB, respectively. At the time of warm-up just before the show, their figures were 5.0㎳, 5.24kHz and 127.0dB, respectively. During the performance of dolphins, with singing, peak frequency ranged 3.28∼5.78kHz and spectrum level ranged 137.0∼142.0dB. With playing ring, pulse width, peak frequency and spectrum level were 7.0㎳, 2.54kHz and 135.9dB, and when playing the ball, the values were 9.0㎳, 2.78kHz and 135.2dB, respectively. The values determined from the five dolphins during jump-up out of water were : pulse width 2.0㎳, peak frequency 4.50kHz and spectrum level 126.8dB. When they responded to trainer's instructions, the values were 2.25㎳, 248kHz and 148.7dB, respectively, and greeting to audience, the peak frequency and spectrum level were 5.84kHz and 122.5dB. During swimming under water, peak frequency and spectrum level were determined to be 10.10kHz and 126.8dB. It was found that there exited close consistencies in pulse width, frequency distribution and spectrum level between whistle sounds and dolphin's sonar signals. Accordingly, the dolphins can be easily trained by using whistle sound based on the results obtained from the waveform and spectrum of the dolphin's sonar signals.

  • PDF

Manganese and Iron Interaction: a Mechanism of Manganese-Induced Parkinsonism

  • Zheng, Wei
    • Proceedings of the Korea Environmental Mutagen Society Conference
    • /
    • 2003.10a
    • /
    • pp.34-63
    • /
    • 2003
  • Occupational and environmental exposure to manganese continue to represent a realistic public health problem in both developed and developing countries. Increased utility of MMT as a replacement for lead in gasoline creates a new source of environmental exposure to manganese. It is, therefore, imperative that further attention be directed at molecular neurotoxicology of manganese. A Need for a more complete understanding of manganese functions both in health and disease, and for a better defined role of manganese in iron metabolism is well substantiated. The in-depth studies in this area should provide novel information on the potential public health risk associated with manganese exposure. It will also explore novel mechanism(s) of manganese-induced neurotoxicity from the angle of Mn-Fe interaction at both systemic and cellular levels. More importantly, the result of these studies will offer clues to the etiology of IPD and its associated abnormal iron and energy metabolism. To achieve these goals, however, a number of outstanding questions remain to be resolved. First, one must understand what species of manganese in the biological matrices plays critical role in the induction of neurotoxicity, Mn(II) or Mn(III)? In our own studies with aconitase, Cpx-I, and Cpx-II, manganese was added to the buffers as the divalent salt, i.e., $MnCl_2$. While it is quite reasonable to suggest that the effect on aconitase and/or Cpx-I activites was associated with the divalent species of manganese, the experimental design does not preclude the possibility that a manganese species of higher oxidation state, such as Mn(III), is required for the induction of these effects. The ionic radius of Mn(III) is 65 ppm, which is similar to the ionic size to Fe(III) (65 ppm at the high spin state) in aconitase (Nieboer and Fletcher, 1996; Sneed et al., 1953). Thus it is plausible that the higher oxidation state of manganese optimally fits into the geometric space of aconitase, serving as the active species in this enzymatic reaction. In the current literature, most of the studies on manganese toxicity have used Mn(II) as $MnCl_2$ rather than Mn(III). The obvious advantage of Mn(II) is its good water solubility, which allows effortless preparation in either in vivo or in vitro investigation, whereas almost all of the Mn(III) salt products on the comparison between two valent manganese species nearly infeasible. Thus a more intimate collaboration with physiochemists to develop a better way to study Mn(III) species in biological matrices is pressingly needed. Second, In spite of the special affinity of manganese for mitochondria and its similar chemical properties to iron, there is a sound reason to postulate that manganese may act as an iron surrogate in certain iron-requiring enzymes. It is, therefore, imperative to design the physiochemical studies to determine whether manganese can indeed exchange with iron in proteins, and to understand how manganese interacts with tertiary structure of proteins. The studies on binding properties (such as affinity constant, dissociation parameter, etc.) of manganese and iron to key enzymes associated with iron and energy regulation would add additional information to our knowledge of Mn-Fe neurotoxicity. Third, manganese exposure, either in vivo or in vitro, promotes cellular overload of iron. It is still unclear, however, how exactly manganese interacts with cellular iron regulatory processes and what is the mechanism underlying this cellular iron overload. As discussed above, the binding of IRP-I to TfR mRNA leads to the expression of TfR, thereby increasing cellular iron uptake. The sequence encoding TfR mRNA, in particular IRE fragments, has been well-documented in literature. It is therefore possible to use molecular technique to elaborate whether manganese cytotoxicity influences the mRNA expression of iron regulatory proteins and how manganese exposure alters the binding activity of IPRs to TfR mRNA. Finally, the current manganese investigation has largely focused on the issues ranging from disposition/toxicity study to the characterization of clinical symptoms. Much less has been done regarding the risk assessment of environmenta/occupational exposure. One of the unsolved, pressing puzzles is the lack of reliable biomarker(s) for manganese-induced neurologic lesions in long-term, low-level exposure situation. Lack of such a diagnostic means renders it impossible to assess the human health risk and long-term social impact associated with potentially elevated manganese in environment. The biochemical interaction between manganese and iron, particularly the ensuing subtle changes of certain relevant proteins, provides the opportunity to identify and develop such a specific biomarker for manganese-induced neuronal damage. By learning the molecular mechanism of cytotoxicity, one will be able to find a better way for prediction and treatment of manganese-initiated neurodegenerative diseases.

  • PDF

Chemical Characteristics of Water Quality of Rainfall, Throughfall, Soil and Stream Water in Small Forested Watershed (산림유역내(山林流域內) 강수(降水), 수관통과우(樹冠通過雨), 토양수(土壤水) 및 계류수(溪流水) 수질(水質)의 화학적(化學的) 특성(特性))

  • Park, Jae-Hyeon;Woo, Bo-Myeong
    • Journal of Korean Society of Forest Science
    • /
    • v.87 no.1
    • /
    • pp.62-73
    • /
    • 1998
  • This research was conducted to analyze the influence of the environmental factors on water quality such as contents of cation($K^+$, $Na^+$, $Ca^{2+}$, $Mg^{2+}$) and anion($Cl^-$, $NO{_3}^-$, $SO{_4}^{2-}$) in rainfall, throughfall, soil water(A and B layer), and stream water at a small forested watershed. Rainfall, throughfall, soil water(A and B layer), and stream water were sampled at the study sites in Kwanak Arboretum, Seoul National University, in Mt. Kwanak for 14 months(Jul. 1, 1996~Aug. 31, 1997). $Cl^-$ content of stream water correlated with that of soil water tire than that of rainfall and throughfall. Also $NO{_3}^-$ content in soil water was correlated with that of rainfall. Cation($K^+$, $Na^+$, $Ca^{2+}$, $Mg^{2+}$) contents in soil water at layer A and B were significantly correlated with anion($Cl^-$, $NO{_3}^-$, $SO{_4}^{2-}$) of that. The ratio of the average content of $NO{_3}^-$ to $SO{_4}^{2-}$ in rainfall was 0.66. Accordingly the content of $SO{_4}^{2-}$ was higher than $NO{_3}^-$ in rainfall. The amount of anion in stream water was significantly correlated with that in rainfall, throughfall, and soil water. Average content of cation and anion in hydrological processes were decreasing in the following order, soil water(B layer> A layer) > throughfall(Pinus rigida > Prunus serrulata var. spontanea > Carpinus laxiflora) > stream water > rainfall.

  • PDF

The Simulation for the Organization of Fishing Vessel Control System in Fishing Ground (어장에 있어서의 어선관제시스템 구축을 위한 모의실험)

  • 배문기;신형일
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.36 no.3
    • /
    • pp.175-185
    • /
    • 2000
  • This paper described on a basic study to organize fishing vessel control system in order to control efficiently fishing vessel in Korean offshore. It was digitalized ARPA image on the fishing processing of a fleet of purse seiner in conducting fishing operation at Cheju offshore in Korea as a digital camera and then simulated by used VTMS. Futhermore, it was investigated on the application of FVTMS which can control efficiently fishing vessels in fishing ground. The results obtained were as follows ; (1) It was taken 16 minutes and 35 minutes to casting and hauling net in fishing processing respectively. The length of rope pulled by scout boat was 200m, tactical diameter in casting net was 340.8m, turning speed was 6kts as well. (2) The processing of casting and hauling net was moved to SW, NE as results of simulation when the current direction and speed set into NE, 2kts and SW, 2kts respectively. Such as these results suggest that can predict to control the fishing vessel previously with information of fishing ground, fishery and ship's maneuvering, etc. (3) The control range of VTMS radar used in simulation was about 16 miles. Although converting from a radar of the control vessel to another one, it was continuously acquired for the vector and the target data. The optimum control position could be determined by measuring and analyzing to distance and direction between the control vessel and the fleet of fishing vessel. (4) The FVTMS(fishing vessel traffic management services) model was suggested that fishing vessels received fishing conditions and safety navigation information can operate safely and efficiently.

  • PDF

Rhizosphere Enhances Removal of Organic Matter and Nitrogen from River Water in Floodplain Filtration (홍수터 여과를 이용한 하천수의 질소와 유기물 제거에 미치는 근권의 효과)

  • Jeong, Byeong-Ryong;Chung, Jong-Bae;Kim, Seung-Hyun;Lee, Young-Deuk;Cho, Hyun-Jong;Baek, Nam-Joo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.36 no.1
    • /
    • pp.8-15
    • /
    • 2003
  • If contaminated river water is sprayed over a floodplain, the microbial processes can simultaneously remove organic matter and nitrogen during the infiltration through the sediment profile. The effect of rhizosphere on the removal of organic matter and nitrogen from contaminated river water was investigated using floodplain lysimeters. River water was sprayed at a rate of $68.0L\;m^{-2}\;d^{-1}$ on the top of the lysimeters with or without weed vegetation on the surface, Concentrations of $NO_3$, $NH_4$ and dissolved oxygen (DO), and chemical oxygen demand (COD) and Eh in water were measured as functions of depth for 4 weeks after the system reached a steady state water flow and biological reactions. A significant reductive-condition for denitrification developed in the 30-cm surface profile of lysimeters with weeds. At a depth of 30 cm, COD and $NO_3$-N concentration decreased to 5.2 and $0.9mg\;L^{-1}$ from the respective influent concentrations of 18.2 and $9.8mg\;L^{-1}$. The removal of $NO_3$ in lysimeters with weeds was significantly higher than in those without weeds. Vegetation on the top was assumed to remove $NO_3$ directly by absorption and to create more favorable conditions for denitrification by supply of organic matter and rapid $O_2$ consumption, In the lysimeters without weeds, further removal of $NO_3$ was limited by the lack of an electron donor, i.e. organic matter. These results suggest that the filtration through native floodplains, which include rhizospheres of vegetation on the surface, can be effective for the treatment of contaminated river water.