• Title/Summary/Keyword: Chemical Processes

Search Result 2,812, Processing Time 0.026 seconds

Low Temperature Growth of MCN(M=Ti, Hf) Coating Layers by Plasma Enhanced MOCVD and Study on Their Characteristics (플라즈마 보조 유기금속 화학기상 증착법에 의한 MCN(M=Ti, Hf) 코팅막의 저온성장과 그들의 특성연구)

  • Boo, Jin-Hyo;Heo, Cheol-Ho;Cho, Yong-Ki;Yoon, Joo-Sun;Han, Jeon-G.
    • Journal of the Korean Vacuum Society
    • /
    • v.15 no.6
    • /
    • pp.563-575
    • /
    • 2006
  • Ti(C,N) films are synthesized by pulsed DC plasma enhanced chemical vapor deposition (PEMOCVD) using metal-organic compounds of tetrakis diethylamide titanium at $200-300^{\circ}C$. To compare plasma parameter, in this study, $H_2$ and $He/H_2$ gases are used as carrier gas. The effect of $N_2\;and\;NH_3$ gases as reactive gas is also evaluated in reduction of C content of the films. Radical formation and ionization behaviors in plasma are analyzed in-situ by optical emission spectroscopy (OES) at various pulsed bias voltages and gas species. He and $H_2$ mixture is very effective in enhancing ionization of radicals, especially for the $N_2$. Ammonia $(NH_3)$ gas also highly reduces the formation of CN radical, thereby decreasing C content of Ti(C, N) films in a great deal. The microhardness of film is obtained to be $1,250\;Hk_{0.01}\;to\;1,760\;Hk_{0.01}$ depending on gas species and bias voltage. Higher hardness can be obtained under the conditions of $H_2\;and\;N_2$ gases as well as bias voltage of 600 V. Hf(C, N) films were also obtained by pulsed DC PEMOCYB from tetrakis diethyl-amide hafnium and $N_2/He-H_2$ mixture. The depositions were carried out at temperature of below $300^{\circ}C$, total chamber pressure of 1 Torr and varying the deposition parameters. Influences of the nitrogen contents in the plasma decreased the growth rate and attributed to amorphous components, to the high carbon content of the film. In XRD analysis the domain lattice plain was (111) direction and the maximum microhardness was observed to be $2,460\;Hk_{0.025}$ for a Hf(C,N) film grown under -600 V and 0.1 flow rate of nitrogen. The optical emission spectra measured during PEMOCVD processes of Hf(C, N) film growth were also discussed. $N_2,\;N_2^+$, H, He, CH, CN radicals and metal species(Hf) were detected and CH, CN radicals that make an important role of total PEMOCVD process increased carbon content.

Development of Beauty Experience Pattern Map Based on Consumer Emotions: Focusing on Cosmetics (소비자 감성 기반 뷰티 경험 패턴 맵 개발: 화장품을 중심으로)

  • Seo, Bong-Goon;Kim, Keon-Woo;Park, Do-Hyung
    • Journal of Intelligence and Information Systems
    • /
    • v.25 no.1
    • /
    • pp.179-196
    • /
    • 2019
  • Recently, the "Smart Consumer" has been emerging. He or she is increasingly inclined to search for and purchase products by taking into account personal judgment or expert reviews rather than by relying on information delivered through manufacturers' advertising. This is especially true when purchasing cosmetics. Because cosmetics act directly on the skin, consumers respond seriously to dangerous chemical elements they contain or to skin problems they may cause. Above all, cosmetics should fit well with the purchaser's skin type. In addition, changes in global cosmetics consumer trends make it necessary to study this field. The desire to find one's own individualized cosmetics is being revealed to consumers around the world and is known as "Finding the Holy Grail." Many consumers show a deep interest in customized cosmetics with the cultural boom known as "K-Beauty" (an aspect of "Han-Ryu"), the growth of personal grooming, and the emergence of "self-culture" that includes "self-beauty" and "self-interior." These trends have led to the explosive popularity of cosmetics made in Korea in the Chinese and Southeast Asian markets. In order to meet the customized cosmetics needs of consumers, cosmetics manufacturers and related companies are responding by concentrating on delivering premium services through the convergence of ICT(Information, Communication and Technology). Despite the evolution of companies' responses regarding market trends toward customized cosmetics, there is no "Intelligent Data Platform" that deals holistically with consumers' skin condition experience and thus attaches emotions to products and services. To find the Holy Grail of customized cosmetics, it is important to acquire and analyze consumer data on what they want in order to address their experiences and emotions. The emotions consumers are addressing when purchasing cosmetics varies by their age, sex, skin type, and specific skin issues and influences what price is considered reasonable. Therefore, it is necessary to classify emotions regarding cosmetics by individual consumer. Because of its importance, consumer emotion analysis has been used for both services and products. Given the trends identified above, we judge that consumer emotion analysis can be used in our study. Therefore, we collected and indexed data on consumers' emotions regarding their cosmetics experiences focusing on consumers' language. We crawled the cosmetics emotion data from SNS (blog and Twitter) according to sales ranking ($1^{st}$ to $99^{th}$), focusing on the ample/serum category. A total of 357 emotional adjectives were collected, and we combined and abstracted similar or duplicate emotional adjectives. We conducted a "Consumer Sentiment Journey" workshop to build a "Consumer Sentiment Dictionary," and this resulted in a total of 76 emotional adjectives regarding cosmetics consumer experience. Using these 76 emotional adjectives, we performed clustering with the Self-Organizing Map (SOM) method. As a result of the analysis, we derived eight final clusters of cosmetics consumer sentiments. Using the vector values of each node for each cluster, the characteristics of each cluster were derived based on the top ten most frequently appearing consumer sentiments. Different characteristics were found in consumer sentiments in each cluster. We also developed a cosmetics experience pattern map. The study results confirmed that recommendation and classification systems that consider consumer emotions and sentiments are needed because each consumer differs in what he or she pursues and prefers. Furthermore, this study reaffirms that the application of emotion and sentiment analysis can be extended to various fields other than cosmetics, and it implies that consumer insights can be derived using these methods. They can be used not only to build a specialized sentiment dictionary using scientific processes and "Design Thinking Methodology," but we also expect that these methods can help us to understand consumers' psychological reactions and cognitive behaviors. If this study is further developed, we believe that it will be able to provide solutions based on consumer experience, and therefore that it can be developed as an aspect of marketing intelligence.