• Title/Summary/Keyword: Chemical Packaging System

Search Result 64, Processing Time 0.018 seconds

Life Cycle Assessment on Process of Wet Tissue Production (물티슈 제조공정의 전과정 평가)

  • Ahn, Joong Woo
    • Clean Technology
    • /
    • v.24 no.4
    • /
    • pp.269-274
    • /
    • 2018
  • In this study, Life Cycle Assessment (LCA) of wet tissue manufacturing process was performed. The wet tissue manufacturing process consists of preparation of wetting agent (chemical liquid), impregnation of nonwoven fabric into wetting agent and primary and secondary packaging. Data and information were collected on the input and output of the actual process from a certain company and the database of the Korea Ministry of Environment and some foreign countries (when Korean unavailable) were employed to connect the upper and the lower process flow. Based on the above and the potential environmental impacts of the wet tissue manufacturing process were calculated. As a result of the characterization, Ozone Layer Depletion (OD) is 3.46.E-06 kg $CFC_{11}$, Acidification (AD) is 5.11.E-01 kg $SO_2$, Abiotic Resource Depletion (ARD) is $3.52.E+00\;1yr^{-1}$, Global Warming (GW) is 1.04.E+02 kg $CO_2$, Eutrophication (EUT) is 2.31.E-02 kg ${PO_4}^{3-}$, Photochemical Oxide Creation (POC) was 2.22.E-02 kg $C_2H_4$, Human Toxicity (HT) was 1.55.E+00 kg 1,4 DCB and Terrestrial Ecotoxicity (ET) was 5.82.E-04 kg 1,4 DCB. In order to reduce the environmental impact of the manufacturing process, it is necessary to improve the overall process as other general cases and change the raw materials including packaging materials with less environmental impact. Conclusively, the energy consumed in the manufacturing process has emerged as a major issue, and this needs to be reconsidered other options such as alternative energy. Therefore, it is recommended that a process system should be redesigned to improve energy efficiency and to change to an energy source with lower environmental impact. Due to the nature of LCA, the final results of this study can be varied to some extent depending on the type of LCI DB employed and may not represent of all wet tissue manufacturing processes in the current industry.

Characteristics of AlN Thin Films by Magnetron Sputtering System Using Reactive Gases of N2 and NH3 (N2와 NH3 반응성가스를 사용하여 마그네트론 스퍼터링법으로 제작한 AlN박막의 특성)

  • Han, Chang-Suk
    • Korean Journal of Materials Research
    • /
    • v.25 no.3
    • /
    • pp.138-143
    • /
    • 2015
  • Aluminum nitride, a compound semiconductor, has a Wurtzite structure; good material properties such as high thermal conductivity, great electric conductivity, high dielectric breakdown strength, a wide energy band gap (6.2eV), a fast elastic wave speed; and excellent in thermal and chemical stability. Furthermore, the thermal expansion coefficient of the aluminum nitride is similar to those of Si and GaAs. Due to these characteristics, aluminum nitride can be applied to electric packaging components, dielectric materials, SAW (surface acoustic wave) devices, and photoelectric devices. In this study, we surveyed the crystallization and preferred orientation of AlN thin films with an X-ray diffractometer. To fabricate the AlN thin film, we used the magnetron sputtering method with $N_2$, NH3 and Ar. According to an increase in the partial pressures of $N_2$ and $NH_3$, Al was nitrified and deposited onto a substrate in a molecular form. When AlN was fabricated with $N_2$, it showed a c-axis orientation and tended toward a high orientation with an increase in the temperature. On the other hand, when AlN was fabricated with $NH_3$, it showed a-axis orientation. This result is coincident with the proposed mechanism. We fabricated AlN thin films with an a-axis orientation by controlling the sputtering electric power, $NH_3$ pressure, deposition speed, and substrate temperature. According to the proposed mechanism, we also fabricated AlN thin films which demonstrated high a-axis and c-axis orientations.

Platinum-Catalyzed and Ion-Selective Polystyrene Fibrous Membrane by Electrospinning and In-Situ Metallization Techniques

  • Hong, Seung-Hee;Lee, Sun-Ae;Nam, Jae-Do;Lee, Young-Kwan;Kim, Tae-Sung;Won, Sung-Ho
    • Macromolecular Research
    • /
    • v.16 no.3
    • /
    • pp.204-211
    • /
    • 2008
  • A platinum-catalyzed polyelectrolyte porous membrane was prepared by solid-state compression of electrospun polystyrene (PS) fibers and in-situ metallization of counter-balanced ionic metal sources on the polymer surface. Using this ion-exchange metal-polymer composite system, fiber entangled pores were formed in the interstitial space of the fibers, which were surrounded by sulfonic acid sites ($SO_3^-$) to give a cation-selective polyelectrolyte porous bed with an ion exchange capacity ($I_{EC}$) of 3.0 meq/g and an ionic conductivity of 0.09 S/cm. The Pt loading was estimated to be 16.32 wt% from the $SO_3^-$ ions on the surface of the sulfonated PS fibers, which interact with the cationic platinum complex, $Pt(NH_3)_4^{2+}$, at a ratio of 3:1 based on steric hindrance and the arrangement of interacting ions. This is in good agreement with the Pt loading of 15.82 wt% measured by inductively coupled plasma-optical emission spectroscopy (ICP-OES). The Pt-loaded sulfonated PS media showed an ionic conductivity of 0.32 S/cm. The in-situ metallized platinum provided a nano-sized and strongly-bound catalyst in robust porous media, which highlights its potential use in various electrochemical and catalytic systems.

An Experimental Study for RFID Application of Construction Materials in an Apartment House Construction Site (건설자재의 공동주택 현장 적용을 위한 RFID 부착 및 인식에 관한 실험적 연구)

  • Ju, Ki-Beom;Han, Choong-Han
    • Korean Journal of Construction Engineering and Management
    • /
    • v.10 no.5
    • /
    • pp.67-75
    • /
    • 2009
  • While the trend of all industries recently lies in combination, construction industry is much interested in enhancing efficiency and competitiveness in the aspect of site control by adopting RFID. Though RFID has been applied to diverse areas thus far, it cannot be easily applied to construction industry due to diverse physical, chemical and use-environmental properties of construction materials. Furthermore, it is rarely applied to the site because of many problems in its application. It is required to prepare RFID code issuance and system that can systematically control the code as well as to research the standardization of frequency, specification, protocol, package method, recognition method, etc in order to apply RFID to construction industry. In this research, RFID code issuance and management program are proposed as a part of program research to apply RFID. Furthermore, the restricted matters of existing RFID tag are drawn to produce pilot product of RFID tag that can solve it so as to perform site application test. According to the experiment, effective recognition distance varies depending on material/environmental property and control efficiency changes depending on attachment method and application method. Thus, preparing diverse restrictive factors and solutions by systematically analyzing control method(medium, process) of current architecture materials and applying it to construction site can be the way to successfully apply RFID.