• 제목/요약/키워드: Chemical Oxidation

검색결과 2,631건 처리시간 0.026초

생체모방계에 의한 시클로헥산 산화반응에서 리간드의 영향 (Influence of Ligand on Oxidation of Cyclohexane in the Biomimetic System)

  • 김성보
    • Korean Chemical Engineering Research
    • /
    • 제43권2호
    • /
    • pp.202-205
    • /
    • 2005
  • GoAgg 생체모방계 산화반응시스템을 이용하여 상온, 상압에서 시크로헥산을 산화 반응하여 시크로헥산올과 시클로헥산온 제조를 위한 연구를 수행하였다. 반응속도론적 연구를 수행하였으며 리간드로 카르복실기를 포함하는 picolinic acid를 사용한 경우 철 촉매만 사용한 경우에 비해 15배 이상의 활성이 증가하였다. 특히 피리딘환이나 이미다졸환에 ortho 위치에 카르복실기를 포함한 경우 meta, para 위치보다 반응성이 크게 증가하였다. 이 결과로부터 새로운 매커니즘을 제안하였다.

Gif-KRICT Biomimetic Oxidation of Cyclohexane: The Influence of Metal Oxides

  • 박애숙;남상성;김성보;이규완
    • Bulletin of the Korean Chemical Society
    • /
    • 제20권1호
    • /
    • pp.49-52
    • /
    • 1999
  • Various metal oxides such as Fe2O3, FeO, TiO2, MnO2, MoO3, WO3 and ZnO have been used as a catalyst for Gif-KRICT type cyclohexane oxidation. In this reaction, the conversion of cyclohexane to cyclohexanone and cyclohexanol and the selectivity ratio of cyclohexanone to cyclohexanol were greatly affected by the acidity of metal oxides. When metal oxide has more acidic property, the reactivity on oxidation is increased and the formation of cyclohexanone is more favored. From this result, we proposed a new mechanism for the biomimetic Gif-KRICT oxidation system.

화학작용제의 2단계 폐기기술(II) (작용제 가수분해 후 초임계수 산화처리) (Chemical Agent Disposal Technology by a 2-step Process(II) (Agent Hydrolysis followed by Supercritical Water Oxidation))

  • 이종철;베리안시아 밤방;송은석;김재덕
    • 한국군사과학기술학회지
    • /
    • 제10권1호
    • /
    • pp.123-129
    • /
    • 2007
  • A 2-step process for the safe destruction of chemical wafare agents(agent hydrolysis followed by supercritical water oxidation) was studied to obtain kinetic data for the pilot plant design. This process is simple to operate by using commercial equipments and could be applied as an alternative technology to incineration. Sarin(GB) and sulfur mustard(HD) were hydrolysed in sodium hydroxide and water respectively and their hydrolysates and OPA, which is binary agent for GB were oxidized in a continuous flow supercritical water oxidation system. Destruction efficiencies of the materials were above 99.99% in supercritical water.

난분해성 산업폐수 처리를 위한 고도산화기술 (Advanced oxidation technologies for the treatment of nonbiodegradable industrial wastewater)

  • 김민식;이기명;이창하
    • 상하수도학회지
    • /
    • 제34권6호
    • /
    • pp.445-462
    • /
    • 2020
  • Industrial wastewater often contains a number of recalcitrant organic contaminants. These contaminants are hardly degradable by biological wastewater treatment processes, which requires a more powerful treatment method based on chemical oxidation. Advanced oxidation technology (AOT) has been extensively studied for the treatment of nonbiodegradable organics in water and wastewater. Among different AOTs developed up to date, ozonation and the Fenton process are the representative technologies that widely used in the field. Based on the traditional ozonation and the Fenton process, several modified processes have been also developed to accelerate the production of reactive radicals. This article reviews the chemistry of ozonation and the Fenton process as well as the cases of application of these two AOTs to industrial wastewater treatment. In addition, research needs to improve the cost efficiency of ozonation and the Fenton process were discussed.