• 제목/요약/키워드: Chemical Kinetic Mechanism

검색결과 433건 처리시간 0.029초

Numerical Simulations of the Pyrolysis of 1, 2 Dichloroethane

  • Lee, Ki-Yong
    • Journal of Mechanical Science and Technology
    • /
    • 제16권1호
    • /
    • pp.102-108
    • /
    • 2002
  • Numerical simulations of 1, 2 dichloroethane(EDC) pyrolyisis are conducted to understand the process in the production of the vinyl chloride monomer (VCM) and by-products. A chemical kinetic mechanism Is developed, with the adopted scheme involving 44 gas-phase species and 260 elementary forward and backward reactions. Detailed sensitivity analyses and the rates of production analysis are performed on each of the reactions and the various species, respectively. The concentrations of EDC, VCM, and HCI predicted by this mechanism are in good agreement with those deduced from experiments of commercial and laboratory scale. The mechanism is found to accurately predict the EDC yield an(1 the production of by-products by varying the ranges of pyrolysis temperature, residence time, and pressure which impact on the pyrolysis of 1, 2 dichloroethane. The influence of reactions related to H atom on the relative sensitivity of EDC becomes important as the residence time increases. The pyrolysis of EDC mainly occurs through C$_2$H$_4$Cl$_2$+Cl=CH$_2$CICHI+HCI.

Kinetics and Mechanism of the Aminolysis of Aryl N-Benzyl Thiocarbamates in Acetonitrile

  • Oh, Hyuck-Keun
    • Bulletin of the Korean Chemical Society
    • /
    • 제32권1호
    • /
    • pp.137-140
    • /
    • 2011
  • The aminolysis reactions of phenyl N-benzyl thiocarbamate with benzylamines in acetonitrile at $50.0^{\circ}C$ are investigated. The reactions are first order in both the amine and the substrate. Under amine excess, pseudo-first coefficient ($k_{obs}$) are obtained, plot of $k_{obs}$ vs free amine concentration are linear. The signs of ${\rho}_{XZ}$ (< 0) are consistent with concerted mechanism. Moreover, the variations of $\rho_X$ and $\rho_Z$ with respect to the sustituent in the substrate and large ${\rho}_{XZ}$ value indicate that the reactions proceed concerted mechanism. The normal kinetic isotope effects ($k_H/k_D$ = 1.3 ~ 1.5) involving deuterated benzylamine nucleophiles suggest a hydrogen-bonded, four-centered-type transition state. The activation parameters, ${\Delta}H^\ddagger$ and ${\Delta}S^\ddagger$, are consistent with this transition state structure.

Kinetics and Mechanism of the Anilinolysis of Bis(aryl) Chlorophosphates in Acetonitrile

  • Barai, Hasi Rani;Lee, Hai-Whang
    • Bulletin of the Korean Chemical Society
    • /
    • 제32권6호
    • /
    • pp.1939-1944
    • /
    • 2011
  • The nucleophilic substitution reactions of bis(Y-aryl) chlorophosphates (1) with substituted anilines and deuterated anilines are investigated kinetically in acetonitrile at 35.0 $^{\circ}C$. The kinetic results of 1 are compared with those of Y-aryl phenyl chlorophosphates (2). The substrate 1 has one more identical substituent Y compared to substrate 2. The cross-interaction between Y and Y, due to additional substituent Y, is significant enough to result in the change of the sign of cross-interaction constant (CIC) from negative ${\rho}_{XY}$ = -1.31 (2) to positive ${\rho}_{XY}$ = +1.91 (1), indicating the change of reaction mechanism from a concerted $S_N2$ (2) to a stepwise mechanism with a rate-limiting leaving group departure from the intermediate (1). The deuterium kinetic isotope effects (DKIEs) involving deuterated anilines ($XC_6H_4ND_2$) show secondary inverse, $k_H/k_D$ = 0.61-0.87. The DKIEs invariably increase as substituent X changes from electron-donating to electron-withdrawing, while invariably decrease as substituent Y changes from electron-donating to electron-withdrawing. A stepwise mechanism with a rate-limiting bond breaking involving a predominant backside attack is proposed on the basis of positive sign of ${\rho}_{XY}$ and secondary inverse DKIEs.