• Title/Summary/Keyword: Chemical Exposure

Search Result 1,293, Processing Time 0.03 seconds

Experimental Study on Ultra-Violet Resistance of FRP composites used in Strengthening RC members (FRP 복합체의 자외선 저항성에 관한 실험적 연구)

  • Song, Tae-Hyeob;Choi, Ki-Sun;You, Young-Chan;Kim, Keung-Hwan
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05b
    • /
    • pp.333-336
    • /
    • 2006
  • In general, polymer materials undergo degradation when exposed to ultraviolet radiation, which can cause dissociation of chemical bonds. FRP composites which are used in strengthening existing structure are usually adhered on the concrete surface, its mechanical properties as well as appearance such as color, surface conditions are affected by sunlight and expecially ultraviolet light. In this study, variations of tensile strength after exposure for certain period of time through accelerated exposure by Xe arc methods specified in KS F 2274 are measured in order to examine strength degradation characteristics of FRP composite. As a result of ultraviolet light test for FRP composite after accelerated exposure for 0, 500, 1000, 1500 hour, discoloration of FRP composite occurs according to the passage of time. But, few strength degradations of FRP composite are observed due to exposure of ultraviolet ray with an small variation of tensile strength.

  • PDF

Flow Characteristics Analysis for the Chemical Decontamination of the Kori-1 Nuclear Power Plant

  • Cho, Seo-Yeon;Kim, ByongSup;Bang, Youngsuk;Kim, KeonYeop
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.19 no.1
    • /
    • pp.51-58
    • /
    • 2021
  • Chemical decontamination of primary systems in a nuclear power plant (NPP) prior to commencing the main decommissioning activities is required to reduce radiation exposure during its process. The entire process is repeated until the desired decontamination factor is obtained. To achieve improved decontamination factors over a shorter time with fewer cycles, the appropriate flow characteristics are required. In addition, to prepare an operating procedure that is adaptable to various conditions and situations, the transient analysis results would be required for operator action and system impact assessment. In this study, the flow characteristics in the steady-state and transient conditions for the chemical decontamination operations of the Kori-1 NPP were analyzed and compared via the MARS-KS code simulation. Loss of residual heat removal (RHR) and steam generator tube rupture (SGTR) simulations were conducted for the postulated abnormal events. Loss of RHR results showed the reactor coolant system (RCS) temperature increase, which can damage the reactor coolant pump (RCP)s by its cavitation. The SGTR results indicated a void formation in the RCS interior by the decrease in pressurizer (PZR) pressure, which can cause surface exposure and tripping of the RCPs unless proper actions are taken before the required pressure limit is achieved.

The Occupational Exposure Limit for Fluid Aerosol Generated in Metalworking Operations: Limitations and Recommendations

  • Park, Dong-Uk
    • Safety and Health at Work
    • /
    • v.3 no.1
    • /
    • pp.1-10
    • /
    • 2012
  • The aim of this review was to assess current knowledge related to the occupational exposure limit (OEL) for fluid aerosols including either mineral or chemical oil that are generated in metalworking operations, and to discuss whether their OEL can be appropriately used to prevent several health risks that may vary among metalworking fluid (MWF) types. The OEL (time-weighted average; 5 mg/$m^3$, short-term exposure limit ; 15 mg/$m^3$) has been applied to MWF aerosols without consideration of different fluid aerosol-size fractions. The OEL, is also based on the assumption that there are no significant differences in risk among fluid types, which may be contentious. Particularly, the health risks from exposure to water-soluble fluids may not have been sufficiently considered. Although adoption of The National Institute for Occupational Safety and Health's recommended exposure limit for MWF aerosol (0.5 mg/$m^3$ ) would be an effective step towards minimizing and evaluating the upper respiratory irritation that may be caused by neat or diluted MWF, this would fail to address the hazards (e.g., asthma and hypersensitivity pneumonitis) caused by microbial contaminants generated only by the use of water-soluble fluids. The absence of an OEL for the water-soluble fluids used in approximately 80-90 % of all applicants may result in limitations of the protection from health risks caused by exposure to those fluids.

HYDROGEN PLASMA DURABILITY OF $SnO_2$:F FILMS (불소 도핑 이산화주석 박막의 수소플라즈마 내구성)

  • Yoon, Kyung-Hoon;Song, Jin-Soo;kang, Kee-Hwan
    • Proceedings of the KIEE Conference
    • /
    • 1992.07b
    • /
    • pp.847-849
    • /
    • 1992
  • Fluorine-doped ($SnO_2$:F) thin films obtained by pyrosol deposition method have been exposed to R.F. excited pure hydrogen plasma under the following conditions; substrate temperature of 200$^{\circ}C$, $H_2$ pressure of 1 Torr, R.F. input power of 50 mW/$\textrm{cm}^{2}$, $H_2$ flow rate of 30cc/min and exposure time of 15-600 seconds. It is found that the sheet resistance of the films remains unchanged or rather slightly reduces for initial exposure time of 30-60 seconds, but increases sharply with further increasing the exposure time. The optical transmittance of $SnO_2$:F films slows a rapid fall with increasing exposure time except for a film obtained with a solution having $CH_3OH/H_2O$ mol ratio of 2.65, its degradations at the exposure time of 30-60 seconds are about 7-15%. In addition, the exposure of the films to hydrogen plasma atmosphere leads to remarkable changes in the microstructure and chemical composition, which should be attributed to the reduction of $SnO_2$ to SnO and to elemental Sn.

  • PDF

The Expression Patterns of Estrogen-responsive Genes by Bisphenol A in the Wild Medaka (Oryzias sinensis)

  • Lee, Chul-Woo;Park, Min-Kyung;Kim, Hyun-Mi;Kim, Hak-Joo;Choi, Kyung-Hee
    • Molecular & Cellular Toxicology
    • /
    • v.3 no.3
    • /
    • pp.185-189
    • /
    • 2007
  • Gene expression levels of choriogenin, vitellogenin and estrogen receptor were determined using Reverse transcription (RT)-PCR technique after exposure to estrogenic chemical bisphenol A in the Korean wild medaka (Oryzias sinensis). These genes have been known to be induced in male test fish when the fish are exposed to estrogenic chemicals. Therefore they can be suggested as a possible biomarker of endocrine disruption in fish, however, relatively little has been known about these genes expression by estrogenic chemicals in Korean wild fish. Mature male Oryzias sinensis were treated with bisphenol A at nominal concentrations of 0.02, 0.2 and 2 mg/L for 6 days and total RNA was extracted from the livers of treated fish for RT-PCR. When the five biomarker genes were amplified by RT-PCR in the same condition, mRNA induction level of each gene was elevated with different sensitivities. Conclusively, the results of this work indicated that measurement of vitellogenin and choriogenin using RT-PCR is effective as a simple tool for the screening of estrogenic chemicals and suggested that O. sinensis would be a suitable model fish for the environmental risk assessment of potential endocrine disruptors.

Biomarkers of Exposure for Cigarette Smoke (담배연기 노출량 평가 생체지표)

  • Park, Chul-Hoon;Shin, Han-Jae;Lee, Hyeong-Seok;Yoo, Ji-Hye;Sohn, Hyung-Ok
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.31 no.1
    • /
    • pp.58-67
    • /
    • 2009
  • Biomarkers could be critical and useful tools for assessing the biological effects of smoking and detecting differences between potentially reduced exposure product (PREP) and conventional cigarettes. Smoking-related biomarkers can be classified into three categories as biomarkers of exposure, biomarkers of effects, and biomarkers of potential harm. When compared with the biomarkers of effects or harm, the biomarkers of exposure for chemical constituents of cigarette smoke are well established and characterized. In addition, they could offer the important information in understanding how cigarette smoke interacts with biological molecules and causes the disease to human. Therefore, we provide an overview of 6 biomarkers of exposure (Nicotine and nicotine metabolites, Carboxyhaemoglobin, NNAL (4-(methylnitrosoamino)-1-(3-pyridyl)-1-butanol) and NNAL - glucuronide, 3-Hydroxypropyl-mercapturic acid, and Monohydroxy-butenyl-mercapturic acids, and Urine mutagenicity) which were validated through extensive research and clinical experience. These reliable biomarkers could help identify the efficacy of PREP by predicting early toxicological effects and lead to improve it.

Neurobehavioral Deficits and Parkinsonism in Occupations with Manganese Exposure: A Review of Methodological Issues in the Epidemiological Literature

  • Park, Robert M.
    • Safety and Health at Work
    • /
    • v.4 no.3
    • /
    • pp.123-135
    • /
    • 2013
  • Exposure to manganese (Mn) is associated with neurobehavioral effects. There is disagreement on whether commonly occurring exposures in welding, ferroalloy, and other industrial processes produce neurologically significant neurobehavioral changes representing parkinsonism. A reviewof methodological issues in the human epidemiological literature onMnidentified: (1) studies focused on idiopathic Parkinson disease without considering manganism, a parkinsonian syndrome; (2) studies with healthy worker effect bias; (3) studies with problematic statistical modeling; and (4) studies arising from case series derived from litigation. Investigations with adequate study design and exposure assessment revealed consistent neurobehavioral effects and attributable subclinical and clinical signs and symptoms of impairment. Twenty-eight studies show an exposure-response relationship between Mn and neurobehavioral effects, including 11 with continuous exposure metrics and six with three or four levels of contrasted exposure. The effects of sustained low-concentration exposures to Mn are consistent with the manifestations of early manganism, i.e., consistent with parkinsonism. This is compelling evidence thatMnis a neurotoxic chemical and there is good evidence that Mn exposures far below the current US standard of $5.0mg/m^3$ are causing impairment.

Indoor Radon and Lung Cancer: Estimation of Attributable Risk, Disease Burden, and Effects of Mitigation

  • Kim, Si-Heon;Koh, Sang-Baek;Lee, Cheol-Min;Kim, Changsoo;Kang, Dae Ryong
    • Yonsei Medical Journal
    • /
    • v.59 no.9
    • /
    • pp.1123-1130
    • /
    • 2018
  • Purpose: Exposure to indoor radon is associated with lung cancer. This study aimed to estimate the number of lung cancer deaths attributable to indoor radon exposure, its burden of disease, and the effects of radon mitigation in Korea in 2010. Materials and Methods: Lung cancer deaths due to indoor radon exposure were estimated using exposure-response relations reported in previous studies. Years of life lost (YLLs) were calculated to quantify disease burden in relation to premature deaths. Mitigation effects were examined under scenarios in which all homes with indoor radon concentrations above a specified level were remediated below the level. Results: The estimated number of lung cancer deaths attributable to indoor radon exposure ranged from 1946 to 3863, accounting for 12.5-24.7% of 15623 total lung cancer deaths in 2010. YLLs due to premature deaths were estimated at 43140-101855 years (90-212 years per 100000 population). If all homes with radon levels above $148Bq/m^3$ are effectively remediated, 502-732 lung cancer deaths and 10972-18479 YLLs could be prevented. Conclusion: These findings suggest that indoor radon exposure contributes considerably to lung cancer, and that reducing indoor radon concentration would be helpful for decreasing the disease burden from lung cancer deaths.

THERMAL ANALYSIS OF THE DUAL CURED RESIN CEMENTS ACCORDING TO CURING CONDITION (중합조건에 따른 dual cured resin cement의 열분석적 연구)

  • Lee, In-Bog;Chung, Kwan-Hee;Um, Chung-Moon
    • Restorative Dentistry and Endodontics
    • /
    • v.24 no.2
    • /
    • pp.265-285
    • /
    • 1999
  • The purposes of this investigation were to observe the reaction kinetics of five commercial dual cured resin cements (Bistite, Dual, Scotchbond, Duolink and Duo) when cured under varying thicknesses of porcelain inlays by chemical or light activation and to evaluate the effect of the porcelain disc on the rate of polymerization of dual cured resin cement during light exposure by using thermal analysis. Thermogravimetric analysis(TGA) was used to evaluate the weight change as a function of temperature during a thermal program from $25{\sim}800^{\circ}C$ at rate of $10^{\circ}C$/min and to measure inorganic filler weight %. Differential scanning calorimetry(DSC) was used to evaluate the heat of cure(${\Delta}H$), maximum rate of heat output and peak heat flow time in dual cured resin cement systems when the polymerization reaction occured by chemical cure only or by light exposure through 0mm, 1mm, 2mm and 4mm thickness of porcelain discs. In 4mm thickness of porcelain disc, the exposure time was varied from 40s to 60s to investigate the effect of the exposure time on polymerization reaction. To investigate the effect on the setting of dual cured resin cements of absorption of polymerizing light by porcelain materials used as inlays and onlays, the change of the intensity of the light attenuated by 1mm, 2mm and 4mm thickness of porcelain discs was measured using curing radiometer. The results were as follows 1. The heat of cure of resin cements was 34~60J/gm and significant differences were observed between brands (P<0.001). Inverse relationship was present between the heat of reaction and filler weight % the heat of cure decreased with increasing filler content (R=-0.967). The heat of reaction by light cure was greater than by chemical cure in Bistite, Scotchbond and Duolink(P<0.05), but there was no statistically significant difference in Dual and Duo(P>0.05). 2. The polymerization rate of chemical cure and light cure of five commercially available dual cured resin cements was found to vary greatly with brand. Setting time based on peak heat flow time was shortest in Duo during chemical cure, and shortest in Dual during light cure. Cure speed by light exposure was 5~20 times faster than by chemical cure in dual cured resin cements. The dual cured resin cements differed markedly in the ratio of light and chemical activated catalysts. 3. The peak heat flow time increased by 1.51, 1.87, and 3.24 times as light cure was done through 1mm, 2mm and 4mm thick porcelain discs. Exposure times recommended by the manufacturers were insufficient to compensate for the attenuation of light by the 4mm thick porcelain disc. 4. A strong inverse relationship was observed between peak heat flow and peak time in chemical cure(R=0.951), and a strong positive correlations hip was observed between peak heat flow and the heat of cure in light cure(R=0.928). There was no correlationship present between filler weight % or heat of cure and peak time. 5. The thermal decomposition of resin cements occured primarily between $300^{\circ}C$ and $480^{\circ}C$ with maximum decomposition rates at $335^{\circ}C$ and $440^{\circ}C$.

  • PDF

Removal Efficiency of Ammonia and Toluene using Mobile Scrubber (이동형 스크러버를 이용한 암모니아 및 톨루엔의 제거 효율)

  • Kim, Jae-Young;Kim, Jang-Yoon;Lee, Yeon Hee;Kim, Min Sun;Kim, Min-Su;Kim, Hyun Ji;Ryu, Tae In;Jeong, Jae Hyeong;Hwang, Seung-Ryul;Kim, Kyun;Lee, Jin Hwan
    • Korean Journal of Environmental Agriculture
    • /
    • v.37 no.1
    • /
    • pp.49-56
    • /
    • 2018
  • BACKGROUND: The mobile vortex wet scrubber was developed to remove the harmful chemicals from accidental releases. However, there was a disadvantage that it was limitedly used for volatile organic compounds (VOCs) such as toluene according to the physicochemical properties. This study compared the removal efficiencies of an improved mobile scrubber on toluene and ammonia by applying diverse adsorption and absorption methods. METHODS AND RESULTS: The removal efficiencies on harmful chemicals were examined using various adsorption and absorption methods of water vortex process (C), phosphoric acid-impregnated activated carbon adsorption (PCA), pH-controlled water (pH 2.5) vortex process absorption with sulfuric acid (SWA) after ammonia exposure, granular activated carbon adsorption (GCA), and activated carbon mat adsorption (CMA) after toluene exposure. As a result, the best removal efficiency was shown in the SWA for ammonia and GCA for toluene. Also, the SWA and GCA methods were compared with different concentration levels. In the case of ammonia exposure (5, 10 and 25%), there was no difference by concentration levels, and the concentration in the outlet gradually increased, with pH change from acid to base. In the case of toluene exposure (50, 75 and 100%), the outlet concentration was higher relative to the exposure concentration in the initial 10 min, but the outlet concentration was remained steady after 10 min. CONCLUSION: The newly improved mobile scrubber was also effective in removing VOCs through adsorption techniques (activated carbon, activated carbon fiber, carbon mat filter etc.), as well as removing acid-base harmful chemicals by neutralization reaction.