• Title/Summary/Keyword: Chemical Erosion

Search Result 195, Processing Time 0.03 seconds

Post buckling mechanics and strength of cold-formed steel columns exhibiting Local-Distortional interaction mode failure

  • Muthuraj, Hareesh;Sekar, S.K.;Mahendran, Mahen;Deepak, O.P.
    • Structural Engineering and Mechanics
    • /
    • v.64 no.5
    • /
    • pp.621-640
    • /
    • 2017
  • This paper reports the numerical investigation conducted to study the influence of Local-Distortional (L-D) interaction mode buckling on post buckling strength erosion in fixed ended lipped channel cold formed steel columns. This investigation comprises of 81 column sections with various geometries and yield stresses that are carefully chosen to cover wide range of strength related parametric ratios like (i) distortional to local critical buckling stress ratio ($0.91{\leq}F_{CRD}/F_{CRL}{\leq}4.05$) (ii) non dimensional local slenderness ratio ($0.88{\leq}{\lambda}_L{\leq}3.54$) (iii) non-dimensional distortional slenderness ratio ($0.68{\leq}{\lambda}_D{\leq}3.23$) and (iv) yield to non-critical buckling stress ratio (0.45 to 10.4). The numerical investigation is carried out by conducting linear and non-linear shell finite element analysis (SFEA) using ABAQUS software. The non-linear SFEA includes both geometry and material non-linearity. The numerical results obtained are deeply analysed to understand the post buckling mechanics, failure modes and ultimate strength that are influenced by L-D interaction with respect to strength related parametric ratios. The ultimate strength data obtained from numerical analysis are compared with (i) the experimental tests data concerning L-D interaction mode buckling reported by other researchers (ii) column strength predicted by Direct Strength Method (DSM) column strength curves for local and distortional buckling specified in AISI S-100 (iii) strength predicted by available DSM based approaches that includes L-D interaction mode failure. The role of flange width to web depth ratio on post buckling strength erosion is reported. Then the paper concludes with merits and limitations of codified DSM and available DSM based approaches on accurate failure strength prediction.

Geographical features and types and changes of agricultural land uses in North Korea

  • Lee, Kyo-Suk;Ryu, Jin-Hee;Lee, Dong-Sung;Hong, Byeong-Deok;Seo, Il-Hwan;Kim, Sung Chul;Chung, Doug-Young
    • Korean Journal of Agricultural Science
    • /
    • v.46 no.1
    • /
    • pp.205-217
    • /
    • 2019
  • The aim of this study was to identify land resources because food production and supply in North Korea have been at risk due to variations in its seasonal climate. More than three-fifths of the soils are locally derived from the weathering of granitic rocks or various kinds of schists developed from crystalline rocks. Well-developed reddish brown soils derived from limestone are found in the North Hwanghae province and in the southern part of the South Pyeongan province. Additionally, a narrow strip of similarly fertile land runs through the eastern seaboard of the Hamgyong and Kangwon Provinces. The loss of clay particles and organic matter are major causes of degradation in the soil physical and chemical properties in North Korea. 75% of the areas converted from forests became croplands, and 69% of the land converted to croplands came from forests. The net forest loss was quite small from the 1990s to the 2000s. However, deforestation in areas with a slightly lower elevation and gentler slope between 1997 and 2014 led to severe soil erosion resulting in a drastic change in the physical and chemical properties of the soil which influenced cropland stability and productivity. Therefore, the drastic changes in land cover as well as in the physical and chemical properties of the soil caused by various geographical features have seriously influenced the productivity of crops in North Korea.

Uniaxial Compressive Strength Characteristic of Shotcrete Immersed in Chemical Solution (화학적 침식에 의한 숏크리트의 압축강도 특성)

  • Lee, Gyu-Phil;Kim, Dong-Gyou;Bae, Gyu-Jin;Kim, Hong-Sam
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.1291-1298
    • /
    • 2005
  • Shotcrete for the support of tunnel can contact with groundwater. The hazardous components in the groundwater cause the corrosion of shotcrete. Also, the hazardous components may deteriorate the engineering properties of shotcrete, such as compressive strength, bond strength, and flexural strength. The more the effect of the hazardous components on the shotcrete may increase, the more the stability of tunnel structure may decrease. It was analyzed to find the hazardous components in the ground water. The uniaxial compressive strength test, XRD, SEM were conducted to evaluate the durability and corrosion of shotcrete. These tests were performed on shotcrete specimens at 2, 4, 8, and 16 weeks. The specimens were immersed in various chemical solutions including hazardous components after the specimens were made at the construction site.

  • PDF

Formation of Barrier ribs for PDP by Water Jet Etching of Green Tape

  • Cho, Yu-Jeong;Kim, Yong-Seog
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2003.07a
    • /
    • pp.784-787
    • /
    • 2003
  • In this study, water jet etching of aqueous green tape was attempted for processing barrier rib of plasma display panel. This process combines 1) chemical etching between water and aqueous based binder in the tape and 2) mechanical erosion by water jet. Effects of etching parameters such as pressure, temperature and aqueous binder content on the morphology of barrier ribs formed were investigated. The results demonstrated a possibility of processing barrier ribs by water jet etching.

  • PDF

Evaluation of Soil Management Practices Using Wild Edible Greens for Reduction of Soil Erosion in Highland (고랭지 경사전 산채류 재배에 의한 토양 유실 저감 평가)

  • Joo, Jin Ho;Kim, Su-Jung
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.40 no.6
    • /
    • pp.488-494
    • /
    • 2007
  • Highland regions for farming are generally located in slopes higher than 7%, where alpine farming systems rely on highly input agriculture management with great amounts of chemical fertilizer and/or compost. Most of the uplands is thus needed to maintain environmentally friendly soil management due to its impact on soil erosion and runoff during heavy rainfall season. Therefore, the objective of this research is to evaluate the effect of reduction of soil erosion by applying four wild edible greens (fatsia, goat beard, leopard plant, and aster). The lysimeter experiment of slope gradients of 15, 30, and 45% was conducted in an alpine region of Hoengkye, Kangwon, in 2005 and 2006. In 2005, both amounts of soil loss from the experiment plots cultivated with goat beard and aster were lower than one with Chinese cabbage by about 50%. The amounts of runoff of goat beard and aster plots were also lower than those of the others. An increase in the slope gradients was accompanied with an increase in runoff. Of the plots of slope gradient of 15, 30, and 45%, S of goat beard plots was 52.50, 108.33, and 171.50 kg, respectively. Soil loss of Chinese cabbage was 2 to 3 times as high as those of goat beard plots. These results suggest that goat beard and aster plants with minimum tillage reduce soil erosion compared to Chinese cabbage cultivation.

Effect of Cover Crop Hairy Vetch on Prevention of Soil Erosion and Reduction of Nitrogen Fertilization in Sloped Upland (경사지 밭토양 유실억제 및 질소비료절감에 대한 피복작물 헤어리벳치의 효과)

  • Seo, Jong-Ho;Park, Jong-Yeol;Song, Duk-Young
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.38 no.3
    • /
    • pp.134-141
    • /
    • 2005
  • Cultivation of winter cover crops and its soil utilization for summer main crops in slope upland is very important at the respects of diminution of soil erosion and non-point pollution source. The effects of cover crop, hairy vetch as no-tillage or conventional tillage on prevention of soil erosion and reduction of chemical nitrogen fertilization were investigated in the slope upland with whiter clover living mulch (partial tillage) in Suwon for three years and with rye (conventional tillage) in Hongcheon for two years, respectively. In Suwon, amounts of soil lost by rainfall runoff decreased as much as 90% by hairy vetch-no tillage (HV-NT), white clover-partial tillage (WF-PT) together with the decrease of rainfall runoff compared to winter fallow with conventional tillage (WF-CT). In addition, amounts of weed also decreased as much as 80-90% by HV-NT and WF-PT. Corn yield decreased much at the plot of WF-PT mainly due to competition for soil water and nutrients between clover and corn at the early corn growth stage. On the contrary, corn yield increased by HV-NT compared to WF-CT regardless of weed control. In Hongcheon, amounts of soil eroded during winter season before corn seeding were reduced as much as 95% by cultivation of hairy vetch and rye compared to winter fallow. Amount of soil eroded during waxy corn growing season was reduced as much as 98% by HV-NT compared to WF-CT. Also, soil incorporation of hairy vetch and rye as green manure with conventional tillage at corn seeding time could reduce soil erosion as much as 70% compared to no soil cover with conventional tillage. Ear yields of waxy corn were increased 10% higher at hairy vetch green manure (HV-CT) without nitrogen fertilizer, 20% higher at HV-NT with standard nitrogen fertilizer, respectively than WF-CT. But ear yields of waxy corn were decreased by rye green manure (R-CT) and HV-NT at the condition of no nitrogen fertilizer. It was concluded that hairy vetch was better as winter cover crop to reduce both soil erosion and chemical nitrogen fertilizer simultaneously in slope upland than other cover crops.

Development of Microstructure Pad and Its Performances in STI CMP (미세 표면 구조물을 갖는 패드의 제작 및 STI CMP 특성 연구)

  • Jeong, Suk-Hoon;Jung, Jae-Woo;Park, Ki-Hyun;Seo, Heon-Deok;Park, Jae-Hong;Park, Boum-Young;Joo, Suk-Bae;Choi, Jae-Young;Jeong, Hae-Do
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.3
    • /
    • pp.203-207
    • /
    • 2008
  • Chemical mechanical polishing (CMP) allows the planarization of wafers with two or more materials. There are many elements such as slurry, polishing pad, process parameters and conditioning in CMP process. Especially, polishing pad is considered as one of the most important consumables because this affects its performances such as WIWNU(within wafer non-uniformity) and MRR(material removal rate). In polishing pad, grooves and pores on its surface affect distribution of slurry, flow and profile of MRR on wafer. A subject of this investigation is to apply CMP for planarization of shallow trench isolation structure using microstructure(MS) pad. MS pad is designed to have uniform structure on its surface and manufactured by micro-molding technology. And then STI CMP performances such as pattern selectivity, erosion and comer rounding are evaluated.

Effect of Biodegradable Polymer Coating on the Corrosion Rates and Mechanical Properties of Biliary Magnesium Alloy Stents (생분해성 고분자 코팅이 담관용 마그네슘 합금 스텐트의 분해 속도와 기계적 물성에 미치는 영향)

  • Kim, Hyun Wook;Lee, Woo-Yiel;Song, Ki Chang
    • Korean Chemical Engineering Research
    • /
    • v.58 no.1
    • /
    • pp.36-43
    • /
    • 2020
  • A biliant stent was fabricated using a magnesium alloy wire, a biodegradable metal. In order to control the fast decomposition and corrosion of magnesium alloys in vivo, magnesium alloy wires were coated with biodegradable polymers such as polycaprolactone (PCL), poly(propylene carbonate) (PPC), poly (L-lactic acid) (PLLA), and poly (D, L-lactide-co-glycolide) (PLGA). In the case of PPC, which is a surface erosion polymer, there is no crack or peeling compared to other polymers (PCL, PLLA, and PLGA) that exhibit bulk erosion behavior. Also, the effect of biodegradable polymer coating on the axial force, which is the mechanical property of magnesium alloy stents, was investigated. Stents coated with most biodegradable polymers (PCL, PLLA, PLGA) increased axial forces compared to the uncoated stent, reducing the flexibility of the stent. However, the stent coated with PPC showed the axial force similar to uncoated stent, which did not reduce the flexibility. From the above results, PPC is considered to be the most efficient biodegradable polymer.

Thermodynamic Prediction of TaC CVD Process in TaCl5-C3-H6-H2 System (TaCl5-C3-H6-H2 계에서 TaC CVD 공정의 열역학 해석)

  • Kim, Hyun-Mi;Choi, Kyoon;Shim, Kwang-Bo;Cho, Nam-Choon;Park, Jong-Kyoo
    • Korean Journal of Materials Research
    • /
    • v.28 no.2
    • /
    • pp.75-81
    • /
    • 2018
  • An ultra-high temperature ceramic, tantalum carbide, has received much attention for its favorable characteristics: a superior melting point and chemical compatibility with carbon and other carbides. One drawback is the high temperature erosion of carbon/carbon (C/C) composites. To address this drawback, we deposited TaC on C/C with silicon carbide as an intermediate layer. Prior to the TaC deposition, the $TaCl_5-C_3H_6-H_2$ system was thermodynamically analyzed with FactSage 6.2 and compared with the $TaCl_5-CH_4-H_2$ system. The results confirmed that the $TaCl_5-C_3H_6-H_2$ system had a more realistic cost and deposition efficiency than $TaCl_5-CH_4-H_2$. A dense and uniform TaC layer was successfully deposited under conditions of Ta/C = 0.5, $1200^{\circ}C$ and 100 torr. This study verified that the thermodynamic analysis is appropriate as a guide and prerequisite for carbide deposition.

Erosion Control Effect by Soil ansi Vegetation Transition in Mountainous Area after Soil Erosion Measures were Initiated (토양 및 식생변화에 따른 토지 사방 공사의 효과에 관한 연구)

  • 이천용
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.14 no.2
    • /
    • pp.7-16
    • /
    • 1986
  • This study was carried out to investigate the effects of such erosion control measures as sowing, planting and small earth structures on the soil and vegetation. In order to study the changes in soil and vegetation, 36 plots were surveyed from 1981 to 1982 in the large erosion control area which is restored last 20 years. The factors which were measured included vegetation coverage, tree growth, number of species, soil depth, soil consistancy, and Chemical properties of soil. The results were as follows; 1) Maximum coverage of the overstory and understory was attained 7 years after the initiation of erosion control. So the overstory need to be tended and pruned. 2) Diversity of species increased until age 6 after which it began to decrease. 3) In order of tree growth, black locust was the fastest, followed by siberian alder and pitch pine. The initial growth of black locust, though the best among the 3 tree stop., decreased rapidly year by year. At the same time, siberian alder and pitch pine grew well until 12 and 6 years after the initiation of erosion control respectively. 4) Fifty percent of the initially planted trees died within 8 yeard. The mortality of siberian alder occurred until the 20th year while the mortality of pitch pine stopped after 10 years. Thereafter 500 trees per hectare were maintained. 5) The soil depth in A and B horision increased by 2cm annually during 20 years. The soil consistency also decreased rapidly until 7th year. The physical soil properties of the rehabilitated areas were improved after the 14th year. 6) The soil pH tend to decrease from 5.3 during the first year to 5.1 during the twentieth year. 7) The organic matter and nitrogen content in the soil were increased by fertilization but after 20 years these nutrients are still deficient for normal tree growth. 8) The phosphorous content in the soil was high in the first year but the longer the period after the initiation of erosion control the lese the content of phosphorous. 9) The biomass of black locust was the highest and increased continuously. The biomass of siberian alder on the contrary decreased from the 15th year because the number of trees in this place was very low. The total biomass in the twentieth year after erosion control initiation was 105.7 ton per hectare.

  • PDF