• Title/Summary/Keyword: Chemical Diffusion Coefficient

Search Result 210, Processing Time 0.022 seconds

On the Chemical Diffusion Coefficient of H2O in AB1-xBxO(3-x/2)-type Perobskites

  • Baek, Hyun-Deok;Virkar, Anil V.
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.9
    • /
    • pp.827-831
    • /
    • 2003
  • In proton-conducting perovskites, oxygen ions and protons make a diffusion pair for a chemical diffusion and thus lead to the transport of $H_2O$ under its chemical potential gradient. The present manuscript develops relationships between the chemical diffusion coefficient of $H_2O$ and the diffusion coefficients of protons and oxygen vacancies with an emphasis on the thermodynamic behavior of the oxygen vacancies. Depending on the degree of hydration X, two different expressions of the chemical diffusion coefficient were obtained : equation omitted and equation omitted.

Prediction of Lithium Diffusion Coefficient and Rate Performance by using the Discharge Curves of LiFePO4 Materials

  • Yu, Seung-Ho;Park, Chang-Kyoo;Jang, Ho;Shin, Chee-Burm;Cho, Won-Il
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.3
    • /
    • pp.852-856
    • /
    • 2011
  • The lithium ion diffusion coefficients of bare, carbon-coated and Cr-doped $LiFePO_4$ were obtained by fitting the discharge curves of each half cell with Li metal anode. Diffusion losses at discharge curves were acquired with experiment data and fitted to equations. Theoretically fitted equations showed good agreement with experimental results. Moreover, theoretical equations are able to predict lithium diffusion coefficient and discharge curves at various discharge rates. The obtained diffusion coefficients were similar to the true diffusion coefficient of phase transformation electrodes. Lithium ion diffusion is one of main factors that determine voltage drop in a half cell with $LiFePO_4$ cathode and Li metal anode. The high diffusion coefficient of carbon-coated and Cr-doped $LiFePO_4$ resulted in better performance at the discharge process. The performance at high discharge rate was improved much as diffusion coefficient increased.

Transport of Water through Polymer Membrane in Proton Exchange Membrane Fuel Cells (고분자전해질 연료전지에서 고분자막을 통한 물의 이동)

  • Lee, Daewoong;Hwang, Byungchan;Lim, Daehyun;Chung, Hoi-Bum;You, Seung-Eul;Ku, Young-Mo;Park, Kwonpil
    • Korean Chemical Engineering Research
    • /
    • v.57 no.3
    • /
    • pp.338-343
    • /
    • 2019
  • The water transport and water content of the electrolyte membrane greatly affect the performance of the membrane in PEMFC(Proton Exchange Membrane Fuel Cell). In this study, the parameters (electroosmotic coefficient, water diffusion coefficient) of polymer membranes for water transport were measured by a simple method, and water flux and ion conductivity were simulated by using a model equation. One dimensional steady state model equation was constructed by using only the electro-osmosis and diffusion as the driving force of water transport. The governing equations were simulated with MATLAB. The electro-osmotic coefficient of $144{\mu}m$ thick polymer membranes was measured in hydrogen pumping cell, the value was 1.11. The water diffusion coefficient was expressed as a function of relative humidity and the activation energy for water diffusion was $2,889kJ/mol{\cdot}K$. The water flux and ion conductivity results simulated by applying these coefficients showed good agreement with the experimental data.

Feature Scale Simulation of Selective Chemical Vapor Deposition Process

  • Yun, Jong-Ho
    • Journal of the Korean Vacuum Society
    • /
    • v.4 no.S1
    • /
    • pp.190-195
    • /
    • 1995
  • The feature scale model for selective chemical vapor deopsition process was proposed and the simulation was performed to study the selectivity and uniformity of deposited thin film using Monte Carlo method and string algorithm. The effect of model parameters such as sticking coefficient, aspect ratio, and surface diffusion coefficient on the deposited thin film pattern was improved for lower sticking coefficient and higher aspect ratio. It was revealed that the selectivity loss ascrives to the surface diffusion. Different values of sticking coefficients on Si and on SiO2 surface greatly influenced the deopsited thin film profile. In addition, as the lateral wall angle decreased, the selectively deposited film had improved uniformity except the vicinity of trench wall. The optimum eondition for the most flat selective film deposition pattern is the case with low sticking coefficient and slightly increased surface diffusion coefficient.

  • PDF

Diffusion Controlled Alkylation of Aromatic Compounds in Cation-Exchanged ZSM-5 Zeolites

  • Chon, Hak-Ze;Lee, Kyung-Yul;Park, Dong-Ho;Ahn, Byoung-Joon
    • Bulletin of the Korean Chemical Society
    • /
    • v.12 no.6
    • /
    • pp.625-628
    • /
    • 1991
  • Using uniform flat plate-like samples of ZSM-5 zeolites, diffusion coefficients were measured volumetrically for the diffusion of xylene, ethyltoluene and diethylbenzene by direct measurement of sorption rate. Toluene disproportionation over H(100)-, K(72)-and Cs(82)-ZSM-5 at 773 K and toluene methylation, toluene ethylation and ethylbenzene ethylation over Cs(75)-ZSM-5 at 623 K were carried out. The selective formation of para xylene during the toluene disproportionation, presumably due to the increased tortuosity over Cs-ZSM-5, could be explained by smaller diffusion coefficient in Cs-ZSM-5 than in K-and H-ZSM-5. The para selectivity increased in the order; toluene methylation < toluene ethylation < ethylbenzene ethylation. As the chain length of the alkyl substituent in dialkylbenzenes is increased, the para selectivity of the products was improved. It may be attributed to the differences in the ratios of diffusion coefficient of para products to that of ortho ones. Diffusion coefficient of m-xylene was about 1 order of magnitude smaller than that of o-xylene.

The Helium-Xenon Interaction Potential

  • Elaheh K. Goharshadi;Majid Moinssadati
    • Bulletin of the Korean Chemical Society
    • /
    • v.22 no.9
    • /
    • pp.945-947
    • /
    • 2001
  • The He-Xe interaction potential has been determined using a direct inversion of the experimentally reduced-viscosity collision integrals obtained from the corresponding states correlation. The potential is in a good agreement with the previously determined potential. The potential predicts viscosity and diffusion coefficients and they are found to be in a good agreement with experiment.

The Prediction of Solvent Mutual Diffusion Coefficient Using Vrentas-Duda's Self Diffusion Theory (Vrentas-Duda의 자기확산이론을 이용한 용매의 상호확산계수 예측)

  • 김종수;이광래;김기창
    • Membrane Journal
    • /
    • v.10 no.1
    • /
    • pp.19-29
    • /
    • 2000
  • To estimatc mutual diffusion coefficient for the analysis of mass transfer phenomena in polymer/solvent system, two models are proposed and the equations are derived. The estimates of mutual diffusion coefficients are obtained by two models suggested in this work and compared with and experimental data and Vrentas-Duda's. Vrentas-Duda's self diffusion coefficient was used for the mutual diffusion coefficient. Derivative of chemical potential on solvent was derived and used using original UNIFAC-FV and modified UNIFAC-FV. However, Vrentas-Duda's equation for mutual diffusion coefficient contains Flory-Huggins parameter x. For the derivative of chemical potential term, Vrentas-Duda assumed that parameter x was constant and independent of temperatures and concentrations The assumption is one of shortcoming in vrentas-Duda's mutual diffusion coefficient. New methods proposed in this work do not have such assumptions and simplifications. For the solvent of cyclohexane, n-pentane, and n-hexane in PIB(polyisolbutylene) and PMS-BR (poly(p-methylstyrene-co-isobutylene), new methods well correlate the experimental data at various temperatures and concentrations, and predicted the experimental data much better than Vrentas-Duda's for the PIB/toluene system. It is shown that new methods are excellent tools for correlating mutual diffusion coefficient data in polymer/solvent system over wide ranges of temperature and concentration without any assumptions or simplifications.

  • PDF

Chemical Strengthening Involving Outward Diffusion Process of Na+ Ion in Iron-containing Soda-lime Silicate Glass

  • Choi, Hyun-Bin;Kang, Eun-Tae
    • Journal of the Korean Ceramic Society
    • /
    • v.52 no.2
    • /
    • pp.133-136
    • /
    • 2015
  • The outward diffusion of $Na^+$ ions in iron-bearing soda lime silicate glass via oxidation heat treatment before the ion exchange process is artificially induced in order to increase the amount of ions exchanged during the ion exchange process. The effect of the addition process is analyzed through measuring the bending strength, the weight change, and the inter-diffusion coefficient after the ion exchange process. The glass strength is increased when the outward diffusion of $Na^+$ ions via oxidation heat treatment before the ion exchange process is added. For the glass subjected to the additional process, the weight change and diffusion depth increase compared with the glass not subjected to the process. The interdiffusion coefficient is also slightly increased as a result of the additional process.

The Transport Phenomena of Some Solutes through the Copolymer Membranes of 2-hydroxyethylmethacrylate (HEMA) with Selected Hydrophobic Monomers

  • Kim, Whan-Gun;Jhon, Mu-Shik
    • Bulletin of the Korean Chemical Society
    • /
    • v.6 no.3
    • /
    • pp.128-131
    • /
    • 1985
  • A series of copolymer membranes of 2-hydroxyethylmethacrylate (HEMA) with selected hydrophobic monomers were prepared without crosslinking agents. The equilibrium water content, the partition coefficient, and the permeability of the solutes such as urea, methylurea, 1,3-di-methylurea, and acetamide via these membranes were measured. The partition coefficient data show that as the hydrophobicity of solutes increased, the partition of solutes were dictated by hydrophobic interaction between solute and polymer matrix. Diffusion coefficients obtained in these experiments decrease as the water content of polymer membrane decreases. This decrease is blunt as the excess heat capacities, ${\phi}C^0_p$ (excess) in aqueous solution at infinite dilution of solute increases. To investigate the relationship between water content and diffusion coefficient, the results of the diffusion experiments were examined in light of a free-volume model of diffusive transport. The remarkable increase of urea mobility in the polymer network containing relatively larger bulk water can be considered as water structure breaking effect.