• Title/Summary/Keyword: Chemical Composition test

Search Result 474, Processing Time 0.032 seconds

Failure Analysis of Waterwall Tubes in Super Critical Boiler (초임계압 보일러 수냉벽 튜브의 파열사고 분석)

  • Kim, B.S.;Jung, N.G.;Kim, D.S.;Lee, S.H.
    • Journal of Power System Engineering
    • /
    • v.7 no.1
    • /
    • pp.20-24
    • /
    • 2003
  • Boiler is one of the most important utilities providing steam to turbine in order to supply mechanical energy in thermal power plant. It is composed of thousands of tubes for high efficient heat transfer. Water is converted to steam inside the waterwall tubes. Many chemical components dissolved in boiler water come out of itself, deposit to the tube wall surface, prohibit heat transer, raise tube metal temperature, eventually fail the boiler tubes. Several tasks such as fracture surface study, tensile test, hardness test, metallurgical test, composition analysis of sticking elements were conducted to identify the root cause of tube failure.

  • PDF

Effect of base metal and welding heat input on the properties of low temperature steel welds made by Electro Gas Welding (저온용 강재 Electro Gas 용접부 물성에 미치는 모재와 용접 입열의 영향)

  • Sung, Hee-Joon;Goo, Yeon-Baeg;Kim, Kyeong-Ju
    • Proceedings of the KWS Conference
    • /
    • 2009.11a
    • /
    • pp.51-51
    • /
    • 2009
  • In order to understand the properties of high heat input welds made by electro gas welding, two kinds of low temperature steel were welded. Welding heat inputs were controlled by width of root gap and ranged from 118 to 143kJ/cm. Chemical composition and micro-structural analysis were performed. To understand low temperature impact properties, Charpy impact test was conducted at several temperatures. The results were summarized as follows; 1) Grain size of weld metal and heat affected zone was increased with an increase in welding heat input. 2) Impact test values at fusion line were severely fluctuated regardless of base metals, showing enormous difference among the values at the same test temperature.

  • PDF

Temperature and Compositional Characteristics of the Hot Spring Water in Korea (우리나라 온천의 온도 및 성분 특징)

  • Lee, Cholwoo
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.121.1-121.1
    • /
    • 2010
  • We analyzed the temperature and chemical composition of 376 hot springs in Korea. It took about three days for the temperature to stabilize after the pumping test. After the stabilization, in-situ and laboratory analyses of the hot spring water were carried out. The average temperature and TDS were $29.95^{\circ}C$ and 2,071mg/L, respectively. The temperature ranging $25-30^{\circ}C$ were recorded from 70% of hot springs, and $30-35^{\circ}C$ of 15.4%. The maximum temperature was about $78^{\circ}C$. The value of TDS in 79% of the wells was below 1,000 mg/L. 5.5% of the wells, mostly developed near seashore, shows higher values than 10,000mg/L of TDS suggesting the influence of seawater. The hot spring water shows 8.49 of pH representing a weak alkali. For the mineral compositions dissolved in the hot spring in Korea, Na (431 mg/L) and Ca (188 mg/L) are the major cations, and Cl (840 mg/L) and $SO_4$ (213 mg/L) are the major anions.

  • PDF

A Study of Material Characteristics of 120mm-Thick SM490TMC Plate (SM490TMC 극후판재 120mm의 소재특성에 관한 연구)

  • Kim, Sang Seup;Lee, Cheol Ho;Lee, Eun Taik;Han, Tae Ho;Choi, Young Han;Kim, Jong Rak
    • Journal of Korean Society of Steel Construction
    • /
    • v.28 no.5
    • /
    • pp.313-323
    • /
    • 2016
  • Seven types of tests were conducted to experimentally evaluate the material properties of ultral-thick (or 120mm-thick) SM490TMC plate. The investigation of through-thickness properties was among the most significant considerations. All chemical and mechanical test results showed the through-thickness homogeneity as required and conformed to the KS(Korean industrial Standards), although the thickness was 1.5 times thicker than the thickness limit (80mm) imposed by Steel Structure Design Code. No reduction in the yield strength of 120mm-thick SM490TMC plate is recommended for design.

A Study on the Manufacture and Application of UV-Cured Multi-Functional(Anti-Stain/Virus) Coating Compounds for PVC Tile (PVC 바닥상재용 광경화형 복합기능(내오염/항균)성 코팅액의 제조 및 응용에 관한 연구)

  • Yoon, Hyun-Jung;Park, Bo-Ram;Ha, Jin-Wook
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.9
    • /
    • pp.3615-3620
    • /
    • 2010
  • This study is development of UV-cured coating compounds which has more improved anti-stain and anti-biosis, about surface prevention of PVC Tile. We added water-soluble anti-static and anti-microbial agent to the resin. The process has prevented electrostatic and bacterial contagious disease. The result, which added 15wt% of water-soluble anti-static and 1wt% anti-microbial agent and coated with No.12 Bar-coater, coating composition had optimum surface property. It appear electric resistance($10^9{\Omega}/cm^2$), anti-stain (Ink Test, Dust Test), anti-biosis (99.99%), and adhesive power(100%).

Changes in the Chemical Composition and Flavor of Yeast Extracts during the Autolysis of Baker's Yeast (자기소화 시간에 따른 호모 Extract의 성분과 풍미의 변화에 관한 연구)

  • Lee, Cherl-Ho;Park, Chang-Real;Chung, Kyeoung-Sik
    • Korean Journal of Food Science and Technology
    • /
    • v.13 no.3
    • /
    • pp.181-187
    • /
    • 1981
  • The changes in the chemical composition of yeast extracts during autolysis and their effect to the sensory quality were studied with baker's yeast, Saccharomyces cerevisiae. The amounts of extracted solids, proteins, amio-N. amino acids, especially glutamic acid, alanine and lysine, increased by the autolysis time up to 48 hrs. The results of sensory evaluation made by the multiple paired comparision test and Duncan's test indicated a significant difference is taste by the time of autolysis. In the profile test, the flavor character notes expressed by the panel were 17 different characters, 11 in aroma and 6 in taste. The character notes and the intensity of flavor changed with the time of autolysis. The sharp and beany flavor of the extracts which was autolyzed for 4 hours turned into meaty and worty flavor by 48 hours of autolysis. A proper arrangement of the flavor characters in the quantitative descriptive chart could provide a weighted value of the flavor grade. The aroma grade index and the taste grade index correlated to the amplitudes of the profile test.

  • PDF

Quality Characteristics of Jelly Added with Pressed Kiwi(Actinidia chinensis var. 'Halla Gold') Juice (참다래 과즙을 첨가한 젤리의 품질 특성)

  • Oh, Hyun-Jeong;Back, Jin-Woo;Lee, Ju-Yeon;Oh, Young-Ju;Lim, Sang-Bin
    • Culinary science and hospitality research
    • /
    • v.19 no.5
    • /
    • pp.110-120
    • /
    • 2013
  • Five types of kiwi jelly were prepared with different rates of pressed kiwi juice and carrageenan, and their quality characteristics such as chemical composition, saccharinity, color, texture, and sensory attributes were measured. There were no significant changes in moisture, crude lipid, carbohydrate, but significant differences were shown in crude ash, crude protein, pH, and acidity. The pH decreased and acidity increased as the amount of added kiwi juice increased. The saccharinity of kiwi jelly increased with increased amount of added kiwi juice. Additionally, the total phenolic content, DPPH radical scavenging activity and content increased with increased amount of added kiwi juice. The hardness, gumminess, and chewiness increased with increased levels of carrageenan. As the amount of added carrageenan increased, the L values of kiwi jelly decreased. Based on the sensory evaluation test, kiwi jelly, JKJ(Jeju Kiwi Jelly)-3 was the best in the flavor, sweetness, texture, and overall acceptability. The chemical composition of JKJ-3 was as follows : moisture $75.1{\pm}0.5%$, carbohydrate $24.2{\pm}0.5%$, crude protein $0.29{\pm}0.05%$, and crude ash $0.44{\pm}0.02%$. The kiwi jelly, JKJ-3 of overall acceptability values in the sensory test for flavor, sweetness, hardness, texture and overall favorite were 3.65, 3.35, 3.35, 3.50 and 3.60, respectively, with the addition of 20% pressed kiwi juice and 2.3% carrageenan.

  • PDF

Development of Mineral Admixture for Concrete Using Spent Coffee Grounds (커피찌꺼기를 활용한 콘크리트 혼화재의 개발)

  • Kim, Sung-Bae;Lee, Jae-Won;Choi, Yoon-Suk
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.10 no.3
    • /
    • pp.185-194
    • /
    • 2022
  • Coffee is one of the most consumed beverages in the world and is the second largest traded commodity after petroleum. Due to the great demand of this product, large amounts of waste is generated in the coffee industry, which are toxic and represent serious environmental problems. This study aims to study the possibility of recycling spent coffee grounds (SCG) as a mineral admixture by replacing the cement in the manufacturing of concrete. To recycle the coffee g rounds, the SCG was dried to remove moisture and fired in a kiln at 850 ℃ for 8 hours. Carbonized coffee grounds are produced as coffee grounds ash (CGA) through ball mill grinding. The chemical composition of the prepared coffee grounds ash was investigated using X-ray fluorescence (XFR). According to the chemical composition analysis, the major elements of coffee grounds ash are K2O(51.74 %), CaO(15.92 %), P2O5(14.39 %), MgO(7.74 %) and SO3(6.89 %), with small amounts of F2O3(0.66 %), SiO2(0.59 %) and Al2O3(0.31 %) content. To evaluate quality and mechanical properties, substitutions of 5, 10, and 15 wt.% of coffee grounds ash (CGA) were tested. From the quality test results, the 28-day activity index of CGA5 reached 80 %, and the flow value ratio reached 96 %, which is comparable to the minimum requirement for second-grade FA. From the test results of the mortar, the optimal results have been found in specimens with 5 wt-% coffee grounds ash, showing good mechanical and physical properties.

Prediction of Mechanical Properties and Behavior of Polymer Matrix Composites Based on Machine Learning (기계학습에 기반한 고분자 복합수지의 기계적 물성 거동 예측)

  • Lee, Nagyeong;Shin, Yongbeom;Shin, Dongil
    • Journal of the Korean Institute of Gas
    • /
    • v.25 no.2
    • /
    • pp.64-71
    • /
    • 2021
  • Research on polymer matrix composites with excellent molding processability and mechanical properties in the automotive field including hydrogen fuel cell electric vehicles is expanding to Computer-Aided Engineering (CAE) to support the design of materials with specific mechanical properties. CAE automation requires the prediction of the mechanical properties and behavior of materials. Unlike single materials, the mechanical properties prediction of polymer matrix composites is difficult to explain with formulas because the mechanical behavior is complicated to be explained only by the relationship between the matrix and the filler. In this study, the stress-strain curve according to the composition of polymer matrix composites, which was difficult to predict due to its sensitivity to large plastic deformation and composition, was predicted based on machine learning of the test data. The developed model finds a complex correlation between matrix and filler types and compositions, and predicts the total stress-strain curve meaningfully even in the absence of learned test data. It is expected that the material design AI system can be completed in the future based on the developed model that predicts the mechanical properties of polymer matrix composites even for the combination and composition that have not been learned.

Effects of Grain Size Distribution in Soil on the Strength Characteristics of Lime-Soil Mixtures (흙의 粒度分捕가 石灰混合土의 强度特性에 미치는 影響)

  • Cho, Seong-Jeong;Kang, Yea-Mook
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.27 no.2
    • /
    • pp.57-71
    • /
    • 1985
  • The characteristics of compaction and unconfined compressive strength were investigated by mixing with lime to all soils adjusted by given percentages of two kinds of clays to sand to obtain the most effective distribution of grain size and the optimum lime content for soil stabilization. In addition, unconfined compressive strength and durability tested by adding of sodium metasilicate, sodium sulfate, sodium carbonate, sodium gydroxide and magnesium oxide to lime-soil mixture mixed with 8 percent lime to adjusted soil having the mixing percentage of 60 percent of cohesive black clay and 40 percent of sand by weight to get the effect and the optimum content of chemicals. The results obtained were as follows; 1.With the addition of more lime, the optimum moisture content was increased, and the maximum dry density was decreased, whereas the more the amount of clay and the less was the maximum drt density. 2. In the soil having more fine grain size the unconfined compressive strength was larger in the earlier stage of curing period, in accordance with the longer period, the mixing percentages of sand to clay showing the maximum unconfined compressive strength, on the basis of 28-day strength, were 60% : 40% (black clay) and 40% : 60% (brown clay) respectively. 3. The reason why the soil adjusted with black clay was remarkably bigger in the unconfined compressive strength than ones adjusted with brown clay for all specimen of lime-soil mixture was the difference in the kind of clay, the amount of chemical compositions the value of pH. Black clay was mainly composed of halloysite that reacted with lime satisfactorily, whereas the main composition of brown clay was kaolinite that was less effect in the enhance of unconfined compressive strength. Also the difference of unconfined compressive strength was because black clay was larger in the amount of composition of calcium oxide and magnesium oxide in the value of pH affecting directly on the unconfined compressive strength of lime-soil mixture than brown clay. 4. In the lime-soil mixture mixed with 8 percent of lime to soil that mixing percentage of sand to black clay was 60% : 40%, on the standard of 7-day strength, the effect of chemical was arranged in the order of magnesium oxide, sodium carbonate, sodium sulfate, sodium hydroxide and sodium metasilicate. 5. The optimum amount of chemical being applicable to the maximum unconfined compressive strength of lime-chemical-soil mixture was 1 percent by weight for air dry soil in the case of adding sodium carbonated and 0.75 percent on sodium hydroxide, the unconfined compressive strength was increased continuously with increase of the amount of chemical up to 2 percent of chemical content is the lime-chemical-soil mixture added sodium metasilicate, sodium sulfate and magnesium oxide. 6. It was considered that the chemical played and accelerant role of early revelation of strength because the rate of increase of unconfined compressive strength of all of lime-chemical-soil mixtures was largest on the 7-day cured specimen. 7. The effect of test on freezing and thawing after adding suitable amount of chemical on the lime-soil mixture mixed with 8 percent of lime to soil that mixing percentage of sand to black clay was 60% : 40% was arranged in the order of magnesium oxide, sodium carbonate, sodium sulfate, sodium metasilicate and sodium hydroxide.

  • PDF