• Title/Summary/Keyword: Chemical Accident

Search Result 512, Processing Time 0.023 seconds

A Study on the Quantitative Process Facility Standards that Require H2S Toxic Gas Detectors and Location Selection for Emergency Safety (H2S 독성가스감지기가 필요한 정량적 공정설비 기준 및 비상시 안전을 위한 위치선정 방안에 대한 연구)

  • Choi, Jae-Young;Kwon, Jung-Hwan
    • Journal of the Korean Institute of Gas
    • /
    • v.22 no.2
    • /
    • pp.90-96
    • /
    • 2018
  • Design techniques for minimizing the damage caused by leakage of $H_2S$ gas, contained in natural gas and petroleum, have been widely studied abroad in chemical plants that purify and process natural gas and petroleum. However, there is no domestic engineering practice and regulation of $H_2S$. In accordance with the circumstances, this study proposes the quantitative criteria of process equipment to install $H_2S$ toxic gas detector as 500 ppm and explains the valid basis. The $H_2S$ gas dispersion radius up to IDLH 100 ppm is calculated by ALOHA under previous $H_2S$ gas leak accident scenario. The weather conditions of modeling include the conditions of Ulsan, Yeosu and Daesan, the three major petrochemical complexes in Korea. The long radius up to 100 ppm was derived in order of Ulsan, Daesan, Yeosu. For emergency safety the dispersion radius up to 100 ppm of the $H_2S$ gas obtained in this study should be extended to apply the additional $H_2S$ toxic gas detector, and local climate conditions should be considered.

Studies on Plywood Treated Fire-Retardant - III. The Fire-Retardant Degree of Monoammonium Phosphate Treated Plywood (합판(合板)의 내화처리(耐火處理)에 관(關)한 연구(硏究) - III. 제1인산(第一燐酸)암모늄처리합판(處理合板)의 내화도(耐火度))

  • Kim, Jong-Man
    • Journal of the Korean Wood Science and Technology
    • /
    • v.14 no.4
    • /
    • pp.21-28
    • /
    • 1986
  • Plywood used for construction as a decorative inner material is inflammable and can fire accident, causing destruction of human life and property. In this study, 3.5mm Kapur plywoods were soaked in the 23% monoammonium phosphate solutions by cold soaking method 3, 6, 9hrs and hot-cold bath method for 3/3hrs, and redrying was carried out by press-drying at the platen temperature of 110, 130, 160, 180$^{\circ}C$, and then fire test was carried out to investigate burning point, flame exhausted length, frame spread length, back side carbonized area and weight loss. The results are as follows; 1. In cold soaking method for 3, 6, 9hrs. retentions of monoammonium phosphate were 0.377, 0.448, 0.498kg/(30cm)$^3$ respectively, and in hot-cold bath method for 3/3hrs, the retention was 1.331kg(30cm)$^3$ that exceeded the minimum retention 1.124kg/(30cm)$^3$. 2. Correlation coefficients among the variable were shown in table 2. From the table, it could be recognized that there were close negative correlations between the treatment and burning point, flame spread length, back side carbonized area, flame exhausted time and weight loss, and there was negative correlation between treating time and back side carbonized area, but there was positive correlation between platen temperature and burning point. 3. From table 3, it can be observed that there were highly significant differences for burning point, flame spread length, flame exhausted time, back side carhonized area, weight loss between treatments. And in 2-way interactions, there were also highly significant for burning point, flame spread length, flame exhausted time, weight loss between time x treatment. 4. It was observed that burning point, flame exhausted time, flame spread length, back side carbonized area, and weight loss in fire-retardant treated plywood were the best effects in fire-retardant treated plywood, water treated plywood and nontreated plywood. In conclusion, I can estimate that absorbed chemical contents by hot-cold bath method for 3/3hrs, have a lot of effects on fire-retardant factors such as burning point, flame spread length, flame exhausted time, backside carbonized area and weight loss, but platen temperatures have a little effects on the fire factors.

  • PDF

Issues of Natech Risk Management (Natech위험의 개념 및 주요 쟁점)

  • Oh, Yoon-Kyung
    • Journal of Environmental Policy
    • /
    • v.13 no.4
    • /
    • pp.79-105
    • /
    • 2014
  • Natech risk is a type of complex disasters that natural hazards trigger technological disaster or industrial accidents. Research on Natech risk has been started from the mid-1990s in European countries and the Unites States, and drawn much more attention after the Fukushima nuclear accident caused by the 2011 East Japan earthquake. While early studies on Natech risk have focused on the causal natural hazards and possibility to occur, and the resulting spill of hazardous materials from the perspective of science and engineering, the recent research interests lie on effective Natech risk management. Especially, emphasizing the difference of Natech risk management from traditional disaster management, issues of uncertainty management, integration between natural disaster and technological disaster, and responsibility, has been drawn attention. In Korea, Natech risk has not been introduced as a research topic. Although some regulatory improvements have been made in nuclear safety and chemical Substance management after the Fukushima disaster, the potential impact of natural hazards in these areas has not been considered yet. It is necessary to raise the issues of Natech risk management in research and policy areas through active discussion and interdisciplinary approaches.

  • PDF

Hazard and Risk Assessment and Cost and Benefit Analysis for Revising Permissible Exposure Limits in the Occupational Safety and Health Act of Korea (산업안전보건법 허용기준 대상물질의 허용기준 개정을 위한 유해성·위험성 평가 및 사회적 비용·편익 분석)

  • Kim, Ki Youn;Oh, Sung Eop;Hong, Mun Ki;Lee, Kwon Seob
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.25 no.2
    • /
    • pp.134-145
    • /
    • 2015
  • Objectives: An objective of this study was to perform a risk assessment and social cost-benefit analysis for revising permissible exposure limits for seven substances: Nickel(Insoluble inorganic compounds), benzene, carbon disulfide, formaldehyde, cadmium(as compounds), trichloroethylene, touluene-2,4-diisocyanate. Materials and Methods: The research methods were divided into risk and hazard assessment and cost-benefit analysis. The risk and hazard assessment for the seven substances consists of four steps: An overview of GHS MSDS(1st), review of document of ACGIH's TLVs (2nd), comparison between international occupational exposure limits and domestic permissible exposure limits(3rd), and analysis of excess workplace and excess rate for occupational exposure limits based on previous work environment measurement data(4th). Total cost was estimated using cost of local exhaust ventilation, number of excess workplace and penalties for exceeding a permissible exposure limit. On the other hand, total benefit was calculated using the reduction rate of occupational disease, number of workplaces treating each substance and industrial accident compensation. Finally, the net benefit was calculated by subtracting total cost from total benefit. Results: All the substances investigated in this study were classified by CMR(Carcinogens, Mutagens or Reproductive toxicants) and their international occupational exposure limits were stricter than the domestic permissible exposure limits. As a result of excess rate analysis, trichloroethylene was the highest at 11%, whereas nickel was the lowest at 0.5%. The excess rates of all substances except for trichloroethylene were observed at less than 10%. Among the seven substances, the total cost was highest for trichloroethylene and lowest for carbon disulfide. The benefits for the seven substances were higher than costs estimated based on strengthening current permissible exposure limits. Thus, revising the permissible exposure limits of the seven substances was determined to be acceptable from a social perspective. Conclusions: The final revised permissible exposure limits suggested for the seven substances are as follows: $0.2mg/m^3$ for nickel, 0.5 ppm(TWA) and 2.5 ppm(STEL) for benzene, 1 ppm(TWA) for carbon disulfide, $0.01mg/m^3$(TWA) for cadmium, 10 ppm(TWA) and 25 ppm(STEL) for trichloroethylene, 0.3 ppm(TWA) for formaldehyde, and 0.005 ppm(TWA) and 0.02 ppm(STEL) for toluene diisocynate(isomers).

Evaluation of Exposure Indicators for Plants by Silicon Tetrachloride Release (사염화규소 누출사고지점 주변 식물에 대한 노출지표 평가)

  • Park, Jae-Seon;Kim, Jee-Young;Kim, Myeong-Ock;Park, Hyun-Woo;Chung, Hyen-Mi;Choi, Jong-Woo
    • Korean Journal of Environmental Agriculture
    • /
    • v.36 no.4
    • /
    • pp.288-292
    • /
    • 2017
  • BACKGROUND: Silicon tetrachloride reacts with moisture in the atmosphere to generate hydrogen chloride, which affects the environment. Since silicon tetrachloride and its by-products are dispersed in the atmosphere in a short time after the silicon tetrachloride release into the atmosphere, it is difficult to directly assess the extent of environmental impact. In the present study, the exposure test of silicon tetrachloride or hydrogen chloride was examined in order to establish the criterion of the range affected by the silicon tetrachloride release, and the actual crops in the area exposed to silicon tetrachloride leakage were analyzed. METHODS AND RESULTS: For the experiment of exposure to silicon tetrachloride or hydrogen chloride, the leaves of red-pepper and corn were used in glass sealed containers. In the actual accident area, 59 samples from 10 different kinds of crops were collected. The pretreatment of the sample was performed by freezing and grinding, and then extracted using distilled water. The pH and concentration of chloride ($Cl^-$) ion of the extracted solution were measured using pH meter and ion chromatograph, respectively. CONCLUSION: Exposure to silicon tetrachloride caused visible damage, increasing the concentration of chloride ion, and decreasing the pH as well as hydrochloric acid. In the actual crops of the affected area, the tendency was the same as the result of the laboratory test, and the range of influence could be estimated through the concentration of $Cl^-$ ion over 2,000 mg/kg, and the correlation evaluation between the concentration of $Cl^-$ and pH. Therefore, the concentration of $Cl^-$ ion and the correlation between $Cl^-$ and pH would be considered as the factors to estimate the influence range of silicon tetrachloride release.

A Study on the Destruction or Removal Efficiency of Toxic Gas Reduction Facilities in Semiconductor and Display Industries (반도체 & 디스플레이 업종에서 사용되는 독성가스 저감시설의 처리효율 측정방법에 관한 연구)

  • Jang, Sung-Su;Han, Jae-Kook;Cho, Hyun-Il;Lee, Su-Kyung
    • Journal of the Korean Institute of Gas
    • /
    • v.21 no.6
    • /
    • pp.88-95
    • /
    • 2017
  • The usage of toxic gas in Korea is increasing in the development of high-tech industries such as semiconductors, displays and solar panels. The recent survey of domestic toxic gas consumption indicates an increase in annual average of 12.4 percent, but it is still focused on usage, and it is negligent in safety and treating the post. In September 2012, an accident occurred in Gu-mi involving hydrofluoric acid leak demonstrates the absence of safety management. Due to the incident, the government, industry and academia have been interested in chemical substances(toxic gas), and the government-led safety management has been established and implemented, but there are still a lot of safety blind spots. The purpose of this study is to develop effective measurement methods for the destruction or removal efficiency of gaseous materials emitted from the Scrubber used in the semiconductor and display industries. Also, this study demonstrated how toxic gas facilities can be applied without error by verification test for the measurement method guideline of the destruction or removal efficiency of the green-house gas reduction facility in the semiconductor and display industries used by the National Institute of Environmental Research and the UNFCCC, and suggested the differentiated measurement methods for toxic gas reduction facilities, and the third party certification for safety facilities is needed to prevent toxic gas accidents.

Quality Properties of Honey in Korean Commercial Markets (국내 유통되는 벌꿀의 품질특성)

  • Kim, Jae-Young;Song, Ha-Yeon;Moon, Jin-Ah;Shin, Min-Hong;Baek, Seung-Hwa
    • Korean Journal of Food Science and Technology
    • /
    • v.46 no.4
    • /
    • pp.432-437
    • /
    • 2014
  • This study was carried out to examine the quality properties of honey in Korean commercial markets. The moisture content, stable carbon isotope ratio, invert sugar, cane sugar, and hydroxy-methylfurfural (HMF) contents of honey were measured according to the Korea Food Code and AOAC's (Association of Official Analytical Chemists) official methods. The stable carbon isotope ratio ranged from -25.18‰ to -12.60‰, which clearly differed between honey of $C_3$ origin (flower) and $C_4$ origin (artificial). Results of quality measurements revealed a moisture content of 18.12 to 19.70%, fructose content of 36.10 to 43.94%, glucose content of 22.61 to 31.91%, sucrose content of 1.56 to 4.75%, invert sugar content of 64.89 to 72.79%, and HMF content of 4.10 to 78.66 mg/kg. These values demonstrate that the quality of the tested honey meets the standard criteria of the Korean Food Code and Codex. However, it is necessary to reconsider the appropriate criteria for imported honey because it is circulated in the market through a long distribution process.

Risk Assessment and Safety Measures for Methanol Separation Process in BPA Plant (BPA 공장의 메탄올 분리공정에서 위험성 평가 및 안전대책)

  • Woo, In-Sung;Lee, Joong-Hee;Lee, In-Bok;Chon, Young-Woo;Park, Hee-Chul;Hwang, Seong-Min;Kim, Tae-Ok
    • Journal of the Korean Institute of Gas
    • /
    • v.16 no.3
    • /
    • pp.22-28
    • /
    • 2012
  • For a methanol separation column of the BPA (Bisphenol A) plant, HAZOP (hazard and operability) assessment was performed and damage ranges were predicted from the accident scenarios for the fire and the explosion. As a result, the damage range of the jet fire was 20 m in the case of rupture of the discharge pipe (50 mm diameter) of safety valve, and that of the flash fire was 267 m in the case of catastrophic rupture. Also, the damage ranges of the unconfined vapor cloud explosion (UVCE) for the rupture of the discharge pipe and for the catastrophic rupture were 22 m and 542 m, respectively. For the worst case of release scenarios, safety measures were suggested as follows: the pressure instruments, which can detect abnormal rise of the internal pressure in the methanol separation column, should be installed by the 2 out of 3 voting method in the top section of the column. Through the detection, the instruments should simultaneously shut down the control and the emergency shut-off valves.

A Study on the Safety Distance of Benzene and Acrylonitrile Releases in Sccordance with Dike and Hole Size (벤젠 및 아크릴로나이트릴 누출시 방류벽 유무 및 누출공에 따른 피해 영향범위 산정에 관한 연구)

  • Kawg, Youngmin;Oak, Jaemin;Yoon, Sukyoung;Jung, Seungho
    • Journal of the Korean Institute of Gas
    • /
    • v.22 no.1
    • /
    • pp.18-25
    • /
    • 2018
  • As the industries become more developed, the amounts of hazardous materials have been increased. Because of that, the possibility of accidents in plants is expected to increase. Especially, the dispersions of toxic materials cause serious effect to human life and environment, So it is very important to confirm safety distance of discharge accident. For this paper, we proposed new algorithms for toxic liquid, such as benzene and acrylonitrile. and using this argorithm, we are going to predict safety distance. The scenario of accidental release was assumed to be the release of entire quantity in 10 minutes is defined as worst-case scenario and Instantaneous release. Also the release from a partial rupture of line is used as an alternative case scenarios as NICS(National Institute of Chemical Safety) guidelines. Using ALOHA program and the algorithm for liquid toxic materials and suggested the graph, as well as correlated equations which can utilize emergency responders.

Real-Time Location Identification of Indoor Rescuees at Accident Sites and Location-Based Rescue Response (사고 현장 실시간 실내 인명 위치확인 및 구조대응 연구)

  • Ko, Youngjoo;Shin, Yongbeom;Yoo, Sangwoo;Shin, Dongil
    • Journal of the Korean Institute of Gas
    • /
    • v.25 no.3
    • /
    • pp.46-52
    • /
    • 2021
  • In this study, the on-site location identification and response system was proposed by accurately checking the location information of rescue requesters in the buildings using the smartphone Wi-Fi AP. The location server was requested to measure the strength of the Wi-Fi AP at least 25 times at 8 different building location points. And the accuracy of the position and the error range were checked by analyzing the coordinate values of the received positions. In addition, the response time was measured by changing the conditions of location information in three groups to compare the response time for saving lives with and without location information. The minimum and maximum error values for the eight cases were found to be at least 4.137 m and up to 14.037 m, respectively, with an average error of 9.525 m. Compared to the base transceiver station (BTS) based position error value of 263m, the range could be reduced by up to 93%. When the location information was given, it took 10 minutes and 50 seconds to save lives; however, when there was no location information at all, rescue process took more than 45 minutes. From this research effort, it was analyzed that the acquisition of the location information of rescuees in the building using the smartphone Wi-Fi AP approach is effective in reducing the life-saving time for on-site responses.