• Title/Summary/Keyword: Chelating solution

Search Result 107, Processing Time 0.033 seconds

EFFECT OF SOFT CHELATING IRRIGATION ON THE SEALING ABILITY OF GP/AH PLUS ROOT FILLINGS (Soft chelating irrigation이 GP/AH Plus로 충전된 근관의 sealing ability에 미치는 영향에 대한 평가)

  • Yu, Yi-Suk;Kim, Tae-Gun;Lee, Kwang-Won;Yu, Mi-Kyung
    • Restorative Dentistry and Endodontics
    • /
    • v.34 no.6
    • /
    • pp.484-490
    • /
    • 2009
  • The purpose of this study was to evaluate the effect of soft chelating irrigant on the sealing ability of root fillings by using a glucose leakage test. A total of 45 single-rooted teeth were selected for the study. The teeth were decoronated leaving a total length of 13mm. The root canals prepared using K3 NiTi rotary instruments to an apical dimension of size 45(0.06 taper). The specimens were then randomly divided into 3 experimental groups of 13 roots each and 2 control groups of 3 roots each. Specimen in each group were prepared with different irrigation protocols : group 1, 2.5% NaOCl; group 2, 2.5% NaOCl and 17% EDTA: group 3, 2.5% NaOCl and 15% HEBP. The root canals were filled with gutta-percha and AH Plus sealer using lateral condensation. After 7 days in $37^{\circ}C$, 100% humidity, the coronal-to-apical microleakage was evaluated quantitatively using a glucose leakage model. The leaked glucose concentration was measured with spectrophotometry at 1, 4, 7, 14, 21 and 28 days. There was a tendency of increase in leakage in all experimental groups during experimental period. HEBP-treated dentin showed no significant difference with EDTA-treated dentin during experimental period. From the 21th day onward, HEBP-treated dentin showed significantly lower leakage than smear-covered dentin. HEBP-treated dentin displayed a similar sealing pattern to EDTA-treated dentin and a better sealing ability than smear-covered dentin. Consequently, a soft chelator(HEBP) could be considered as the possible alternative to EDTA.

Preparation of Chemical Solution for the Provisional Cement Remnant Cleaning in Dental Crown (치과 보철용 크라운에 잔존하는 임시 시멘트의 용해액의 개발)

  • Yi, Yong-Hyun;Kim, Byung-Jin;Lee, Kwang-Rae
    • Journal of Industrial Technology
    • /
    • v.37 no.1
    • /
    • pp.12-15
    • /
    • 2017
  • It is important in dentistry that the provisional cement should be cleaned thoroughly from the crown before definitive cementation. The provisional cement has been removed by physical means such as curette, scaler, pumice, or sand-blasting with alumina particles, which is time-consuming, irritating, tedious, even causing crack. To avoid such troubles occurring through such physical cleaning means, the chemical solutions for dissolving the provisional cement remaining in dental crown were prepared, and solubilizing power of the solutions was measured and compared. The solution composed of MEA, NaOH, chloride chemicals ($CHCl_3$, $CCl_4$, $CH_2Cl_2$), surfactants (Igepal, Tween20), chelating agent (EDTA), and Ethyl cellosolve was most effective for dissolving the provisional cement.

A Study of Selective Absorption of Metal Ions by Chelating Agent-Loaded Anion Exchange Resins (킬레이트 시약으로 처리한 음이온 교환수지에 의한 금속이온의 선택적 흡착에 관한 연구)

  • Lee Dai Woon;Lee, Won;Yu Euy Kyung
    • Journal of the Korean Chemical Society
    • /
    • v.23 no.3
    • /
    • pp.141-151
    • /
    • 1979
  • The selective absorption of metal ions by chelating agent-loaded resins was studied in aqueous media. The resins were prepared by loading the conventional anion exchange resin, Dowex 1-X8 (50 to 100 mesh) with chelating agents containing sulfonic group, such as 8-hydroxy-quinoline-5-sulfonic acid (HQS) and 7-nitroso-8-hydroxyquinoline-5-sulfonic acid (NHQS). The stability of the resin was markedly influenced by the following factors; (1) the affinity and concentration of anions in the external solution, (2) the pH of the media. The optimum conditions for the absorption of metal ions were determined with respect to the pH, shaking time, and the effect of anion concentration in the medium. Under the optimum condition the order of the absorption of metal ions such as Fe(Ⅲ), Cu(Ⅱ), Pb(Ⅱ), and Zn(Ⅱ) was in accord with that of the stability constants of the chelates. The total capacities of the resins were found in the range of 0.6∼1.6 mmole metal per gram.

  • PDF

Preparation of Ferroelectric PZT Thin Film by Sol-Gel Processing; (I) Synthesis of Stable PZT Sol Using Chelating Agent and Preparation of Its Thin Film (졸-겔법에 의한 강유전성 PZT 박막의 제조;(I) 킬레이팅 에이전트를 이용한 안정화 PZT 졸의 합성 및 박막의 제조)

  • Kim, Byong-Ho;Hong, Kwon;Cho, Hong-Yeon
    • Journal of the Korean Ceramic Society
    • /
    • v.31 no.7
    • /
    • pp.804-812
    • /
    • 1994
  • Stable PZT coating sol was prepared using chelating agent, ethylacetoacetate(EAcAc) by sol-gel processing under ambient atmosphere. Through FT-IR spectrum analysis on solution of each reaction step, formation of metal complex was confirmed and prepared PZT sol was stable over several months. Through TG-DTA, XRD, FT-IR spetrum analysis of PZT gel powder, it was understood that the addition of EAcAc could reduce the transition temperature to ferroelectric phase, due to the increased homogeneity by matching the hydrolysis and condensation rates by chelation. Single perovskite phase was obtained by the heat-treatment at 54$0^{\circ}C$ for 30 min. The film was coated on ITO-coated glass substrate by dip coating method. After heat-treatment, PZT thin film had thickness in the range of 20~130 nm. The maximum dielectric constant of its thin film at room temperature and 1 kHz was 128.

  • PDF

Stabilization of Doxorubicin Hydrochloride in Injections (염산 독소루비신 주사액의 안정화)

  • Lee, Sang-Cheol;Nam, Sang-Cheol;Kim, Chun-Seong;Shin, Hyun-Jong;Paik, Woo-Hyun
    • Journal of Pharmaceutical Investigation
    • /
    • v.24 no.3
    • /
    • pp.109-113
    • /
    • 1994
  • Effects of various formulation factors using $L_8$ orthogonal arrays with the stability of doxorubicin hydrochloride injections(DHls) were investigated. The degradation of DHI may be occured by pH, temperature, light and metal ions. It is known that DHI should be stored on refrigerated condition of $4{\sim}8^{\circ}C$ because of its unstability on the room temperature. The employed factors were sodium chloride as isotonic solution, sodium bisulfite or sodium pyrosulfite as an antioxidant, disodium edetate as a chelating agent, methyl parahydroxybenzoate as a dissolution time shortening agent, and hydrochloric acid or citric acid as a pH adjusting agent at $22^{\circ}C$. From the results of $L_8$ orthogonal arrays, an optimal formula, including sodium chloride, disodium edetate, sodium bisulfite and hydrochloric acid, was obtained and the shelf-life of the formula was determined as 560 days approximately.

  • PDF

Decontaminatin Techniques using Liquid/Supercritical $CO_2$ (액체 및 초임계 이산화탄소를 이용한 제염법)

  • 박광헌;김홍두;김학원;고문성;윤청현
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2003.11a
    • /
    • pp.650-654
    • /
    • 2003
  • A major problem of nuclear energy is the production of radioactive wastes. Needs for more environmentally favorable method to decontaminate radioactive contaminants make the use of liqui $d^ercritical $CO_2$ as a solvent medium. In removing radioactive metallic contaminants under $CO_2$ solvent, two methods - use of chelating ligands and that of water in $CO_2$ emulsion-are possible. In the chelating ligand method, a combination of ligands that can make synergistic effects seems important. We discuss about the properties of microemulsion formed by F-AOT and that by non-ionic surfactant. By adding acid in water core, decontamination of metallic parts, soils were possible. The rate of metal surface dissolution to the microemulsion solution was measured by QCM. The possibility of recovering the surfactants after use is also mentioned.ed.

  • PDF

Chelation of Calcium Ions by Poly(${\gamma}$-Glutamic Acid) from Bacillus subtilis (Chungkookjang)

  • Tsujimoto, Takashi;Kimura, Junya;Takeuchi, Yasushi;Uyama, Hiroshi;Park, Chung;Sung, Moon-Hee
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.10
    • /
    • pp.1436-1439
    • /
    • 2010
  • Many studies have clarified that poly(${\gamma}$-glutamic acid) (PGA) increases the solubility of $Ca^{2+}$, suggesting that PGA enhances calcium absorption in the small intestine. However, there has been no report on the specific interaction between PGA and $Ca^{2+}$ in water. We studied the aqueous solution properties of PGA calcium salt (PGA-Ca complex). The chelating ability and binding strength of PGA for $Ca^{2+}$ were evaluated. The PGA-Ca complex was soluble in water, in contrast to the insolubility of poly(acrylic acid) (PAA) calcium salt, and the chelating ability of PGA for $Ca^{2+}$ was almost the same as that of PAA. The globular conformation of the PGA-Ca complex in water was estimated by SEC and viscosity measurements. The chelation ability of PGA for $Ca^{2+}$ was examined by $^1H$ NMR. The present study showing the characteristics of the PGA-Ca complex will provide useful information about the calcium absorption by PGA in vivo.

The Solvent Extraction of Uranium(VI) and Other Metal Ions with Pyrazolone Chelating Agents -The Studios on the Rad-Waste Treatment(1)- (킬레이팅 화합물에 의한 우라늄의 용매추출 -방사성 폐기물 처리 처분 연구(I)-)

  • Hun Hwee Park;Nak June Sung
    • Nuclear Engineering and Technology
    • /
    • v.15 no.2
    • /
    • pp.117-122
    • /
    • 1983
  • The chelating agent with $\beta$-diketo funtional group, 1-phenyl-3-methyl-4-acyl-pyrazolone-5-one, has been used in separating and extracting radionuclides in a waste solution. The derivatives of this pyrazolone compound, prepared by different acyl groups, were synthesized and examined to figure out the extracting ability for Uranium (VI) and Zirconium (IV). The product prepared with succinic anhydride, called succinyl pyrazolone, showed excellent extraction for uranium (VI) in a chloroform solvent system. This result indicates that acyl pyrazolones having carboxylic acid group as a functional group forming $\beta$-diketo functionality are very selective for uranium (VI) and generally other metal ions with high valency.

  • PDF

Remediation of heavy metal-contaminated soils using eco-friendly nano-scale chelators

  • Lim, Heejun;Park, Sungyoon;Yang, Jun Won;Cho, Wooyoun;Lim, Yejee;Park, Young Goo;Kwon, Dohyeong;Kim, Han S.
    • Membrane and Water Treatment
    • /
    • v.9 no.3
    • /
    • pp.137-146
    • /
    • 2018
  • Soil washing is one of the most frequently used remediation technologies for heavy metal-contaminated soils. Inorganic and organic acids and chelating agents that can enhance the removal of heavy metals from contaminated soils have been employed as soil washing agents. However, the toxicity, low removal efficiency and high cost of these chemicals limit their use. Given that humic substance (HS) can effectively chelate heavy metals, the development of an eco-friendly, performance-efficient and cost-effective soil washing agent using a nano-scale chelator composed of HS was examined in this study. Copper (Cu) and lead (Pb) were selected as target heavy metals. In soil washing experiments, HS concentration, pH, soil:washing solution ratio and extraction time were evaluated with regard to washing efficiency and the chelation effect. The highest removal rates by soil washing (69% for Cu and 56% for Pb) were achieved at an HS concentration of 1,000 mg/L and soil:washing solution ratio of 1:25. Washing with HS was found to be effective when the pH value was higher than 8, which can be attributed to the increased chelation effect between HS and heavy metals at the high pH range. In contrast, the washing efficiency decreased markedly in the low pH range due to HS precipitation. The chelation capacities for Cu and Pb in the aqueous phase were determined to be 0.547mmol-Cu/g-HS and 0.192mmol-Pb/g-HS, respectively.