• Title/Summary/Keyword: Cheju

Search Result 4,278, Processing Time 0.031 seconds

A research of Cheju Island plain coarse pottery and pantiles magnetism characteristic

  • Yoon, Tae-Gun;Park, Won-Jun;Ko, Jeong-Dae;Hong, Sung-Rak
    • Proceedings of the Korean Magnestics Society Conference
    • /
    • 2000.09a
    • /
    • pp.413-420
    • /
    • 2000
  • Cheju Island has nature of typical trass through volcanic activities in many times. The soil in Cheju Island has principally sprung from basalt and partially made up of trachyte, trachyte's nature and site. Also ancient relics, plain coarse pottery's kilns and pantiles kilns are homogeneously distributed all over the Cheju Island. In this study, as a result of X-ray fluorescence spectrometer and Mossbauer spectroscopy of a sample are from plain coarse pottery and pantiles in 5 regions of Cheju Island. It is thought that these samples are partially formed from neutral volcanic rock like trachyte and Atomicity state of iron is almost Fe$\^$3+/. Also the magnetic hyperfine field length of goethite, contained these samples is less than synthetic goethite magnetic hyperfine field length and this result shows that disintegration of inner magnetic order, created by partial substitution of diamagnetic positive ion containing Fe$\^$3+/ and Al$\^$3+/ in goethite lattice.

  • PDF

Monthly Variation of Water Mass Distribution and Current in the Cheju Strait

  • Pang, Ig-Chan;Hong, Chang-Su;Chang, Kyung-Il;Lee, Jae-Chul;Klm, Jun-Teck
    • Journal of the korean society of oceanography
    • /
    • v.38 no.3
    • /
    • pp.87-100
    • /
    • 2003
  • The monthly observations of hydrography in the Cheju Strait from September 1995 to June 1998 show that the Cheju Strait is occupied mostly by Tsushima Current Water in winter and coastal waters in summer. In summer, the Yangtze Coastal Water appears in the upper layer and cold water in the lower layer. Especially, the Yellow Sea Bottom Cold Water appears in August 1997, and the clockwise flow of warm water along the northwestern coasts of Cheju Island is disturbed by an eastward expansion of the cold water from the northwest. The cold water expansion seems to be partly associated with strong southeasterly winds. Current measurements in the Cheju Strait suggest that there exists steady eastward barotropic component of about 5 cm/sec, which corresponds to 0.2 Sv barotropic transport in the Cheju Strait. Geostropic transport (baroclinic component) ranges from 0.1 Sv in winter to 0.4 Sv in summer. By adding the barotrophic component of 0.2 Sv, the total transport varies from 0.3 Sv to 0.6 Sv, which is consistent with previous estimations. The transport increase in summer seems to be caused by the expansion of coastal water to the Cheju Strait.

Observations of the Cheju Current

  • Suk, Moon-Sik;Pang, Ig-Chan;Teague, William J.;Chang, Kyung-Il
    • Journal of the korean society of oceanography
    • /
    • v.35 no.3
    • /
    • pp.129-152
    • /
    • 2000
  • The Cheju Current (CC), defined here as a mean eastward flow in the Cheju Strait, mostly carries water of high temperature and salinity originating from the Kuroshio in winter and spring, the Cheju Warm Current Water (CWCW). The strong core of the eastward component of the CC is found close to Cheju Island (Cheju-Do, hereafter) in winter and spring with a peak speed of about 17.0 cm/s. The eastward flow weakens towards the northern Cheju Strait, and a weak westward flow occurs occasionally close to the southern coast of Korea. The volume transport ranges from 0.37 to 0.45 Sv(1 Sv=10$^6$ m$^3$/s) in winter and spring. Seasonal thermocline and harocline are formed in summer and eroded in November. The occurrence of the CWCW is confined in the southern Cheju Strait close to Cheju-Do below the seasonal thermocline in summer and fall, and cold water occupies the lower layer north of the CWCW which is thought to be brought into the area from the area west of Cheju-Do along with the CWCW. Stratification acts to increase both the speed of the CC with a peak speed of greater than 30 cm/s and the vertical shear of the along-strait currents. The strong core of the CC detached from the coast of Cheju-Do and shifted to the north during the stratified seasons. The volume transport in summer and fall ranges 0.510.66 Sv, which is about 1.5 times larger than that in winter and spring. An annual cycle of the cross-strait sea level difference shows its maximum in summer and fall and minimum in winter and spring, whose tendency is consistent with the annual variability of the CC and its transport estimated from the ADCP measurements. Moored current measurements west of Cheju-Do indicate the clockwise turning of the CC, and the moored current measurements in the Cheju Strait for 1530 days show the low-frequency variability of the along-strait flow with a period of about 37 days.

  • PDF

Oceanographic Conditions in the Neighboring Seas of Cheju Island and the Appearance of Low Salinity Surface Water in May 2000 (2000년 5월 제주도 주변해역의 해황 및 표층 저염분수의 출현)

  • KIM Sang Hyun;RHO Hong Kil
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.37 no.2
    • /
    • pp.148-158
    • /
    • 2004
  • In the adjacent seas of Cheju Island, the oceanographic conditions show low salinity surface waters starting in May. This water flows from the southeast part of the China Coastal Water, which flows southeastward along the Great Yangtze Sand Bank until April, with the help of southeasterly winds and flows from the adjacent sea off Cheju Island. In May, the Tsushima Warm Current and the low salinity surface water fluctuate in short and long-term periods as influenced by Yellow Sea Cold Water, which flows to the bottom layer at the western entrance of Cheju Strait. Temperature and salinity fronts in the northeastern sea area of U Island are formed in the boundary area between the Tsushima Warm Current, which expands towards Cheju Island from the southeastern sea area of Cheju Island and Hows out from the eastern entrance of the strait. Seasonally, additional oceanographic conditions, such as coastal counter-currents, which flow southward, appears within limited areas in the adjacent eastern and western seas of Cheju Island.