• Title/Summary/Keyword: Cheese whey

Search Result 91, Processing Time 0.03 seconds

Milk Fat Substitution by Microparticulated Protein in Reduced-fat Cheese Emulsion: The Effects on Stability, Microstructure, Rheological and Sensory Properties

  • Urgu, Muge;Turk, Aylin;Unluturk, Sevcan;Kaymak-Ertekin, Figen;Koca, Nurcan
    • Food Science of Animal Resources
    • /
    • v.39 no.1
    • /
    • pp.23-34
    • /
    • 2019
  • Fat reduction in the formulation of cheese emulsion causes problems in its flowability and functional characteristics during spray-dried cheese powder production. In order to eliminate these problems, the potential of using microparticulated whey protein (MWP) in cheese emulsions was examined in this study. Reduced-fat white-brined cheese emulsions (RF) with different dry-matters (DM) (15%, 20%, and 25% excluding emulsifying salt) were produced using various MWP concentrations (0%-20% based on cheese DM of emulsion). Their key characteristics were compared to full-fat cheese emulsion (FF). MWP addition had no influence on prevention of the phase separation observed in the instable group (RF 15). The most notable effect of using MWP was a reduction in apparent viscosity of RF which significantly increased by fat reduction. Moreover, increasing the amount of MWP led to a decrease in the values of consistency index and an increase in the values of flow behavior index. On the other hand, using high amounts of MWP made the emulsion more liquid-like compared to full-fat counterpart. MWP utilization also resulted in similar lightness and yellowness parameters in RF as their full-fat counterparts. MWP in RF increased glossiness and flowability scores, while decreased mouth coating scores in sensory analyses. Fat reduction caused a more compact network, while a porous structure similar to FF was observed with MWP addition to RF. In conclusion, MWP showed a good potential for formulation of reduced-fat cheese emulsions with rheological and sensorial characteristics suitable to be used as the feeding liquid in the spray drying process.

Growth Characteristics of Lactic Acid Bacteria in Whey-Soy Milk Mixtures (유청(乳淸)과 두유(豆乳) 혼합액(混合液)에서의 유산균(乳酸菌) 생육특성(生育特性))

  • Kim, Jeong-Hwan;Lee, Hyong-Joo
    • Korean Journal of Food Science and Technology
    • /
    • v.16 no.3
    • /
    • pp.285-290
    • /
    • 1984
  • Growth characteristics of six lactic acid bacteria in whey-soy milk mixtures were investigated to obtain basic informations for processing cheese-like product by coprecipitation of whey and soy proteins. Streptococcus cremoris and Lactobacillus acidophilus produced more aicd than other lactic acid bacteria both in whey-soy milk mixture and in soy milk. Lactic acid fermentation was accelerated in whey-soy milk mixture than in soy milk with all the lactic aicd bacteria, and specially with S. lactis and S. cremoris in great extent. The number of viable cell of 1:1 mixed culture of S. lactis and S. cremoris in whey soy milk mixture was about 10 times than in soymilk. It was mainly the effect of lactose in the whey that increased the acid production by lactic aicd bacteria in whey-soy milk mixture although the degree of acceleration depended on the ability of microorganism to use carbohydrates. The optimum amount of lactose added to soy milk to accelerate the acid production was 0.8g/100ml soy milk.

  • PDF

Production of Ready-to-Reconstitute Functional Beverages by Utilizing Whey Protein Hydrolysates and Probiotics

  • Kumar, Sabbini Kalyan;Jayaprakasha, Heddur Manjappa;Paik, Hyun-Dong;Kim, Soo-Ki;Han, Song-Ee;Jeong, A-Ram;Yoon, Yoh-Chang
    • Food Science of Animal Resources
    • /
    • v.30 no.4
    • /
    • pp.575-581
    • /
    • 2010
  • This investigation was aimed at developing a ready-to-reconstitute beverage by utilizing probiotics and whey protein hydrolysates carrying bioactive peptides. Cheddar cheese whey was ultrafiltered. The 18% protein retentate was subjected to protein hydrolysis using Neutrase. The hydrolyzed retentate was further condensed to 35% total solids and spray-dried at $75^{\circ}C$ outlet air temperature. Different levels of sugar, citric acid and stabilizer were blended for spray-dried hydrolysates. Spray-dried hydrolysate was further inoculated with different levels of probiotics grown in a whey medium and dried in fluidized-bed drier at $40^{\circ}C$ to obtain a ready-to-reconstitute beverage. Hydrolysis was greatest at an enzyme:substrate ratio of 1:25 for 3 h. Spray-dried hydrolysate reconstituted to 1% protein and blended with 15% sugar, 0.2% citric acid and 0.15% xantham gum resulted in a superior product with no sedimentation. Accordingly, sugar, citric acid and xanthum gum were dry-blended with spray-dried hydrolysates. Bifidobacterium bifidum and Lactobacillus acidophilus that was grown separately in a whey medium, blended to produce 2% spray-dried hydrolysate and dried as described above resulted in a readyto-reconstitute beverage mix. The fluidized dried product typically exhibited a probiotic count of $10^8$colony forming units (CFU)/g. However, blending of probiotic to the retentate and direct spray-drying precipitously reduced the probiotic count to $10^4$ CFU/g of powder.

The Quality Characteristics of Sponge Cake with Varied Levels of Whey Protein Isolate (Whey Protein Isolate(WPI)의 대체비율을 달리한 스폰지 케이크의 품질 특성에 관한 연구)

  • Ahn, Myung-Soo;Kim, Chan-Hee
    • Korean journal of food and cookery science
    • /
    • v.23 no.1 s.97
    • /
    • pp.41-49
    • /
    • 2007
  • The substitution effects of whey protein isolate(WPI) for egg in the preparation of sponge cake were determined by objective and subjective tests. Milk whey is drained from milk curd as a by-product of cheese manufacture. Whey protein is known as a good nutritional source and a functional material for many processed foods, especially baked goods. WPI contains above 90% whey protein. The specific gravity and viscosity of sponge cakes tend to be affected by WPI substitution. The cooking loss of sponge cakes with WPI substituted for egg(abbreviated as WPI cake) during oven baking was smaller than that made with egg(abbreviated as egg cake) and the specific loaf volume of WPI cake was larger than that of egg cake. The number of pores was highly increased and the size of pores was more uniformly and finely distributed in the cross section of WPI cake than those of egg cake, as observed by scanning electron microscopy(SEM). The hardness, gumminess and chewiness of WPI cake made with 10-20% WPI substitution were the lowest among all the tested cakes, including egg cake, thereby confirming the considerable improvement in their cake qualities. By the results of sensory evaluation, appearance, pore uniformity, softness, chewiness, moistness, flavor, mouth feeling, and overall acceptability of 10-20% WPI substitute cakes were evaluated as being significantly superior to those of all other cakes(p<0.05). These results support the better physicochemical characteristics and sensory evaluations of sponge cake prepared with 10-20% of WPI substitution for egg.

Effect of Thermalization and Ultrafiltration Membrane on the Increase of Cottage Cheese Yield Using Radiolabelled Protein (방사성 표지단백질을 이용한 우유의 열처리 및 한외거르기가 코티지 치즈의 생산성 증대에 미치는 영향)

  • Noh, Bong-Soo;Park, In-Seon
    • Korean Journal of Food Science and Technology
    • /
    • v.22 no.7
    • /
    • pp.774-779
    • /
    • 1990
  • $[^{14}C]$-radiolabelled ${\beta}-lactoglobulin$ was used for the studies on the effect of thermalization and ultrafiltration for the increase of cheese yield. 4.33% of ${\beta}-lactoglobulin$ was incorporated through thermalization. $3.20{\sim}3.65%$ of ${\beta}-lactoglobulin$ was more incorporated with cheese curd in the thermalization and ultrafiltration than without ultrafiltration process. Comparing with protein increase, other whey proteins might be incorporated with casein micelles. Loss of $[^{14}]C-{\beta}-lactoglobulin$ through processing and adsorption to membrane during ultrafiltration was only 1.03%.

  • PDF

Quantitative Analysis of Milk-Derived microRNAs and Microbiota during the Manufacturing and Ripening of Soft Cheese

  • Oh, Sangnam;Park, Mi-Ri;Ryu, Sangdon;Maburutse, Brighton E.;Kim, Ji-Uk;Kim, Younghoon
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.9
    • /
    • pp.1566-1575
    • /
    • 2017
  • MicroRNAs (miRNAs) are abundant in bovine milk and milk derived from other livestock, and they have functional roles in infants and in the secretion process of mammary glands. However, few studies have evaluated miRNAs in dairy processes, such as during cheese making and ripening. Thus, we investigated the characteristics of milk-derived miRNAs during the manufacturing and ripening of Camembert cheese as well as the microbiota present using the quantitative reverse transcription polymer chain reaction (RT-qPCR) and 16S rRNA pyrosequencing, respectively. Pyrosequencing showed that the cheese microbiota changed dramatically during cheese processing, including during the pasteurization, starter culture, and ripening stages. Our results indicated that the RNA contents per $200mg/200{\mu}l$ of the sample increased significantly during cheese-making and ripening. The inner cheese fractions had higher RNA contents than the surfaces after 12 and 22 days of ripening in a time-dependent manner (21.9 and 13.2 times higher in the inner and surface fractions than raw milk, respectively). We performed a comparative analysis of the miRNAs in each fraction by RT-qPCR. Large amounts of miRNAs (miR-93, miR-106a, miR-130, miR-155, miR-181a, and miR-223) correlated with immune responses and mammary glands were present in aged cheese, with the exception of miR-223, which was not present on the surface. Considerable amounts of miRNAs were also detected in whey, which is usually disposed of during the cheese-making process. Unexpectedly, there were no significant correlations between immune-related miRNAs and the microbial populations during cheese processing. Taken together, these results show that various functional miRNAs are present in cheese during its manufacture and that they are dramatically increased in amount in ripened Camembert cheese, with differences according to depth.

Physicochemical Properties of Whey Protein Isolate (WPI의 물리화학적 특성에 관한 연구)

  • Ahn, Myung-Soo;Kim, Chan-Hee
    • Korean Journal of Food Science and Technology
    • /
    • v.39 no.1
    • /
    • pp.50-54
    • /
    • 2007
  • In this study, the physicochemical properties of cheese whey protein isolate (WPI) were measured. The total amount of amino acids in WPI was 89.5% and the proportion of essential amino acids was 44.6%. Among these, leucine, lysine, isoleucine, and valine were shown in large amounts. At various pHs, the solubility of WPI (82-88%) was higher than that of sodium caseinate, (5-79%). The solubility of WPI was not affected by variation of pH. It was shown that the emulsifying capacity of WPI was higher than that of egg yolk by 1.6 times, but the stabilities of emulsions made with WPI and egg yolk was almost same each other at 65-97% and 60-89%, respectively. The foaming capacity of WPI was higher than that of egg white, at 323.3% and 186.6%, respectively, but the foam stability of WPI was similar to that of egg white.

Quality Characteristics of Protein-enriched Fermented Milk made with Whey and Soybean Flour (유청과 콩가루를 활용한 단백질 강화발효유의 품질특성)

  • Jo, Jun-Hee;Yang, Hee-Sun;Choi, Yu-Jin;Lee, Sang-Cheon;Choi, Bong-Suk;Park, Tae-Young;Kim, Jin-Kyeong;Huh, Chang-Ki
    • Journal of Dairy Science and Biotechnology
    • /
    • v.32 no.2
    • /
    • pp.121-129
    • /
    • 2014
  • This study was carried out to investigate the quality characteristics of protein enriched fermented milk made with whey and soybean flour. Protein-enriched fermented milk was prepared as follows: Soybean flour was added before fermentation. No synthetic aroma was added. The fermentation starter culture was ABT-4 (Chr. Hansen). Whey protein was added after fermentation. Sensory evaluation indicated that sample containing soybean flour amount of 5% were better than other samples. The pH values and titratable acidities of stored protein-enriched fermented milk and fermented milk, respectively, were not remarkably different. Crude protein was more than 3 times higher in protein-enriched fermented milk (8.77%) than in fermented milk (2.49%). The crude fat content of protein-enriched fermented milk was not remarkably different compared to that of fermented milk. Dietary fiber was more than 2.7 times higher in protein-enriched fermented milk (1.67%) than in fermented milk (0.62%), and the free amino acid content was more than 14 times higher in protein-enriched fermented milk (37.9%) than in fermented milk (2.6%).

  • PDF

Quality characteristics of whey Makgeolli by Kluyveromyces marxianus (Kluyveromyces marxianus에 의한 유청막걸리 품질특성)

  • Kim, Su-Hwan;Huh, Chang-Ki;Kim, So-Mang;Cho, In-Kyung;Kim, Yong-Doo
    • Food Science and Preservation
    • /
    • v.22 no.4
    • /
    • pp.528-534
    • /
    • 2015
  • This study was performed to analyze the processing and quality characteristics of whey Makgeolli prepared with different types of yeast and ratio of the whey content. Lactose content of yeast culture medium containing S. cerevisiae. was 1.36% whereas lactose content of yeast culture containing K. marxianus KCCM 12015 was very little. Yeast culture of both K. marxianus KCCM 35455 and K. marxianus KCCM 50700 did not produce lactose. Until the 10th day, ethanol production ability of S. cerevisiae, K. marxianus KCCM 12015, K. marxianus KCCM 35455, and K. marxianus KCCM were 0.31%, 2.51%, 2.53%, and 2.59%, respectively. Total acids content increased rapidly with the increase in the addition of whey content in the initial 2 days and then decreased during 4~10 days of fermentation. In the aspect of pH, the pH was rapidly decreased in the initial 2 days and then increased until 10th day of fermentation with the increase in whey content. Ethanol content of whey Makgeollis at 10th day of fermentation was the highest in yeast culture containing K. marxianus. From the sensory evaluation, the flavor score of whey Makgeollisin was higher than that of control. The color and taste scores were increased as the increase in the addition of whey. The comprehensive preference indicated that Makgeolli prepared with 100% whey was the best among other samples.