• Title/Summary/Keyword: Checkerboard targets

Search Result 4, Processing Time 0.016 seconds

Automatic Target Recognition for Camera Calibration (카메라 캘리브레이션을 위한 자동 타겟 인식)

  • Kim, Eui Myoung;Kwon, Sang Il
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.36 no.6
    • /
    • pp.525-534
    • /
    • 2018
  • Camera calibration is the process of determining the parameters such as the focal length of a camera, the position of a principal point, and lens distortions. For this purpose, images of checkerboard have been mainly used. When targets were automatically recognized in checkerboard image, the existing studies had limitations in that the user should have a good understanding of the input parameters for recognizing the target or that all checkerboard should appear in the image. In this study, a methodology for automatic target recognition was proposed. In this method, even if only a part of the checkerboard image was captured using rectangles including eight blobs, four each at the central portion and the outer portion of the checkerboard, the index of the target can be automatically assigned. In addition, there is no need for input parameters. In this study, three conditions were used to automatically extract the center point of the checkerboard target: the distortion of black and white pattern, the frequency of edge change, and the ratio of black and white pixels. Also, the direction and numbering of the checkerboard targets were made with blobs. Through experiments on two types of checkerboards, it was possible to automatically recognize checkerboard targets within a minute for 36 images.

Comparison of the Accuracy of Stereo Camera Calibration According to the Types of Checkerboards (체커보드의 유형에 따른 스테레오 카메라 캘리브레이션의 정확도 비교)

  • Kim, Eui Myoung;Kwon, Sang Il
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.38 no.6
    • /
    • pp.511-519
    • /
    • 2020
  • For camera calibration, a checkerboard is generally used to determine the principal point, focal length, and lens distortions. The checkerboard has a planar and three-dimensional shape, and camera calibration parameters are affected by the size of the checkerboard, the placement of the target, and the number of target points. In this study, the accuracies of the types of checkerboards were compared using checkpoints for stereo camera calibration, and the purpose of this study was to propose the best performance checkerboard. The checkerboard with large flat shape showed comparatively high accuracy through comparison with the check points. However, due to the size of the checkerboard, it was inconvenient to move and rotate, and there was a disadvantage in that it was difficult to shoot so that the target points could all appear in the stereo camera. The checkerboard, which was manufactured in a small size in a flat shape, was easy to move and rotate but had the lowest three-dimensional accuracy. The checkerboard with targets with height values had the hassle of having to determine the three-dimensional coordinates of the target points by using observation equipment for camera calibration, but it was small in size, convenient to move and rotate, and showed the highest three-dimensional accuracy.

Multi-camera System Calibration with Built-in Relative Orientation Constraints (Part 2) Automation, Implementation, and Experimental Results

  • Lari, Zahra;Habib, Ayman;Mazaheri, Mehdi;Al-Durgham, Kaleel
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.32 no.3
    • /
    • pp.205-216
    • /
    • 2014
  • Multi-camera systems have been widely used as cost-effective tools for the collection of geospatial data for various applications. In order to fully achieve the potential accuracy of these systems for object space reconstruction, careful system calibration should be carried out prior to data collection. Since the structural integrity of the involved cameras' components and system mounting parameters cannot be guaranteed over time, multi-camera system should be frequently calibrated to confirm the stability of the estimated parameters. Therefore, automated techniques are needed to facilitate and speed up the system calibration procedure. The automation of the multi-camera system calibration approach, which was proposed in the first part of this paper, is contingent on the automated detection, localization, and identification of the object space signalized targets in the images. In this paper, the automation of the proposed camera calibration procedure through automatic target extraction and labelling approaches will be presented. The introduced automated system calibration procedure is then implemented for a newly-developed multi-camera system while considering the optimum configuration for the data collection. Experimental results from the implemented system calibration procedure are finally presented to verify the feasibility the proposed automated procedure. Qualitative and quantitative evaluation of the estimated system calibration parameters from two-calibration sessions is also presented to confirm the stability of the cameras' interior orientation and system mounting parameters.

Sclerotiorin: a Novel Azaphilone with Demonstrated Membrane Targeting and DNA Binding Activity against Methicillin-Resistant Staphylococcus aureus

  • Dasagrandhi, Chakradhar;Pandith, Anup;Imran, Khalid
    • Microbiology and Biotechnology Letters
    • /
    • v.48 no.4
    • /
    • pp.429-438
    • /
    • 2020
  • The emergence of multi-drug resistant, pathogenic methicillin-resistant Staphylococcus aureus (MRSA) is a threat to global health and has created a need for novel functional therapeutic agents. In this study, we evaluated the underlying mechanisms of the anti-MRSA effect of an azaphilone pigment, sclerotiorin (SCL) from Penicillium sclerotiorum. The antimicrobial activity of SCL was evaluated using agar disc diffusion, broth microdilution, time-kill assays and biophysical studies. SCL exhibits selective activity against Gram positive bacteria including MRSA (range, MIC = 128-1028 ㎍/ml) and exhibited rapid bactericidal action against MRSA with a > 4 log reduction in colony forming units within three hours of administration. Biophysical studies, using fluorescent probes and laser or electron microscopy, demonstrated a SCL dose-dependent alternation in membrane potential (62.6 ± 5.0.4% inhibition) and integrity (> 95 ± 2.3%), and the release of UV260 absorbing materials within 60 min (up to 3.2 fold increase, p < 0.01) of exposure. Further, SCL localized to the cytoplasm and hydrolyzed plasmid DNA. While in vitro checkerboard studies revealed that SCL potentiated the antimicrobial activity of topical antimicrobials such as polymixin, neomycin, and bacitracin (Fractional Inhibitory Concentration Index range, 0.26-0.37). Taken together these results suggest that SCL targets the membrane and DNA of MRSA to facilitate its anti-MRSA antimicrobial effect.