• Title/Summary/Keyword: Check-Valve

Search Result 210, Processing Time 0.032 seconds

Realization of Check Valve Condition Monitoring system using AE sensor (AE 센서를 이용한 Check Valve 상태감시 시스템 구현)

  • Jeon, Jeong-Seob;Lee, Seung-Youn;Beak, Seoung-Mun;Lyou, Joon;Kim, Jeong-Su
    • Proceedings of the KIEE Conference
    • /
    • 2004.11c
    • /
    • pp.49-51
    • /
    • 2004
  • This paper presents a realization of fault detection algorithm and Fieldbus based communication for condition monitoring of check valve. We first acquired the AE(Acoustic Emission) sensor data at the KAERI check valve test loop, extract fault features through the learned Neural network, and send the processed data to a remote site. The overall system has been implemented and experimental results are given to show its effectiveness.

  • PDF

An Experimental Study of the Swing Check Valve Disc Stability

  • Kim, Yang-Seok;Song, Seok-Yoon;Kim, Dae-Woong;Park, Sung-Keun;Hong, Sung-Yull
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 2004.10a
    • /
    • pp.157-158
    • /
    • 2004
  • To investigate the effects of the upstream flow conditions on the opening performance of the swing check valve, the tests were performed at various conditions of the disturbance type and distance from the tested check valves. The results show that the upstream flow disturbances due to elbow and globe valve at $2{\sim}10$ diameters upstream of the check valve produced minor effects on the check valve performance compared to the uniform flow condition. However, more detail analysis and additional testing with the other disturbance source, such as orifice with a large number of holes, are needed to refine and confirm the present results.

  • PDF

Realization of Communication and Sensor Signal Processing Technique for Condition Monitoring of Check Valve (Check Valve 상태감시를 위한 통신 및 센서신호처리 기능 구현)

  • Jeon, Jeong-Seop;Jo, Jae-Geun;Kim, Jeong-Su;Yu, Jun
    • Proceedings of the KIEE Conference
    • /
    • 2003.11b
    • /
    • pp.223-226
    • /
    • 2003
  • This paper presents a realization of sensor signal processing(noise filtering) and Fieldbus based communication for condition monitoring of check valve. we first acquired the AE(Acoustic Emission) sensor data at the KAERI check valve test loop, and their frequencies were analyzed to find the informative band. To reject background noises, bandpass filters have been designed. Also, to send the processed data to a remote site, wired communication facility has been realized via DeviceNet.

  • PDF

Investigation on the Degradation Mechanism of 6" Swing Check Valve for Nuclear Power Plant (발전소 6 인치 역지밸브 손상 원인 분석)

  • Lee, Seon-Gi;Lee, Jun-Sin;Kim, Tae-Ryong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.138-144
    • /
    • 2000
  • Degradation occurred at the 6 inch swing check valve in nuclear power plant. Valve replacement and maintenance were carried out during the plant O/H. This report examined the degradation mechanism of the 6 inch check valve by the experimental and theoretical study. Results shows that the degradation was caused by valve chattering which due to the structural and acoustic resonance.

  • PDF

An Experimental Determination of a Swing Check Valve Closure Time in the Main Feed Water System of a Power Plant during Shut-down Process (발전소 주급수 계통 감발 과정에서의 스윙체크밸브 닫힘 시점의 실험적 결정)

  • Suh, Jin-Sung;Kim, Won-Min
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.8
    • /
    • pp.843-849
    • /
    • 2009
  • The reliable operation of a swing check valve in the main feed water system of a power plant is most essential for successful shout-down process. A failure to close the valve at proper time often leads to the instability of the main feed water system, or even to an emergency stop of the power plant. In reality it is a very difficult task to monitor the behavior of a swing check valve. Furthermore it is impossible to see the motion of the valve. In this work two measurements were carried out simultaneously to determine the precise valve closure time. The dynamic pressure measurements were made at the inlet and outlet regions of the swing check valve. The transient vibration of the valve housing in the direction of water flow was also measured, which enabled the measurement of the transient vibration of the valve housing near valve closure. By comparing the results produced from these measurements the precise valve closure time could be determined. By carrying out order tracking technique using the dynamic pressure signals and pump rpm signal, the complicated dynamic problems inside the main feed water system can be more easily dealt with. This measurement scheme might be implemented in a power plant on a real-time basis without much difficulty. If this could be implemented, valuable information essential for shut-down operations can readily be passed on to the main control room. The feasibility of this implementation was demonstrated by this experimental work.

Development of Check Angle Safety Valve for Residential Gas Piping (주택용 가스배관 체크앵글 안전밸브 개발 연구)

  • Lim, Sang Ho
    • Industry Promotion Research
    • /
    • v.2 no.1
    • /
    • pp.9-13
    • /
    • 2017
  • This study deals with the check valve safety valve for residential gas piping. It can be manually shut off within 1 second in case of emergency, and it is possible to touch 3kg of pressure by hand force. To develop the technology so that it can be used repeatedly. Study results after first valve operation. And 0.61 seconds on average. Therefore, it was found that there was no problem in operation even when used as a safety valve. Third, it was found that all of the results of using the blocking ball diameter of 7mm were not abnormal. In this study, it is meaningful to develop the check valve safety valve of gas piping and verify the performance by testing with existing valve.

Performance Evaluation Method of a Swing Check Valve (스윙형 역지밸브 성능 평가 방법)

  • Kim, Y.S.;Lee, D.W.;Kim, D.W.;Park, S.K.;Hong, S.Y.
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.881-886
    • /
    • 2003
  • In spite of its simple design, structure and operating mechanism, swing check valves are one of the critical components which adversely affect the safety of the nuclear power plants if they fail to function properly. Therefore, it is important to evaluate the performance condition of the swing check valves in safety-related systems. The performance characteristics of swing check valves include opening characteristics, the minimum required flow velocity, the pressure drop at design flow, the disc stability, and the effect of the upstream disturbances. Among factors to identify the performance of a swing check valve, a method to evaluate the opening characteristics and the minimum required flow velocity, which guarantees to fully open the disc and hold the disc without motion, are presented to determine the operating region of the swing check valve, such as stable, tapping, or oscillation. Based on the determined operating region and opening characteristics, the simple methods of wear and fatigue analyses of the specific parts of the valve are also described.

  • PDF