• 제목/요약/키워드: Check valve

검색결과 211건 처리시간 0.025초

유한요소법을 이용한 FCEV용 체크밸브의 열간 단조 공정 해석 (Analysis of Hot Forging Process of Check Valve in FCEV using Finite Element Method)

  • 정동환;송현정;이창훈;이승범;김지훈;손근주;조해용
    • 한국기계가공학회지
    • /
    • 제20권11호
    • /
    • pp.100-107
    • /
    • 2021
  • The use of new and renewable energy is essential to solve the problem of increasing fossil fuel use due to industrial development. The paradigm of the automobile industry has changed due to the strengthening of environmental regulations in developed countries, and the development of eco-friendly cars is underway. Fuel cell electric vehicles (FCEVs), which use hydrogen as fuel, require strict standards for fuel-related components. In particular, check valves for FCEV control high-pressure hydrogen and thus, must be sufficiently strong for the challenging environment caused by high-pressure hydrogen. Therefore, this study used DEFORM 3D, a regular finite element analysis program, to check the moldability of check valves for FCEV, design the process, verify reliability through single streamline analysis, tensile tests, and ANSYS simulations, and identify suitable materials for the high-pressure hydrogen environment.

전도 수문용 유압장치의 에너지 효율에 관한 연구 (Study for the Energy Efficiency of Hydraulic System of Turnover-Type Sluice Gate)

  • 이성래
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회A
    • /
    • pp.1225-1230
    • /
    • 2007
  • The turnover-type sluice gate is typically actuated by the hydrauic system. The hydraulic system may be a open circuit type or a closed circuit type. The open circuit type hydraulic system is composed of a uni-directional pump, a directional control valve, pilot operated check valves, flow control valves, single-rod cylinders. The closed circuit type hydraulic system is composed of a bi-directional pump, pilot operated check valves, check valves, a counter balance valve, single-rod cylinders. The energy efficiencies of two hydraulic systems for the turnover-type sluice gate are compared here.

  • PDF

독립공리를 이용한 메인 스타팅 밸브의 분석 및 설계 (Analysis and Design of a Main Starting Valve Using Independence Axiom)

  • 배태성;박수철;박상일;이권희
    • 한국기계가공학회지
    • /
    • 제9권5호
    • /
    • pp.7-13
    • /
    • 2010
  • Main starting valve is one of the main parts in the control system of diesel engines, purposed for starting main engines. It is composed of ball valve, check valve, actuator, etc. The design axioms provide a general framework for design methodology. Two axioms are independence axiom and information axiom. These axioms can be applied to all design process in a general way. The first axiom is introduced to analyze and evaluate the design of a main starting valve. The design parameters(DPS) are determined sequentially by considering the independence axiom. For the structural design of a main starting valve, the strength is calculated by using finite element method. In addition, the strength of its actuator piston is evaluated.

양방향 삼중편심 버터플라이 밸브 개발 (Development of Bi-directional Triple-eccentric Type Butterfly Valve)

  • 김수영;이동명;배정훈;신성철;설창호
    • 대한조선학회논문집
    • /
    • 제46권5호
    • /
    • pp.545-551
    • /
    • 2009
  • In naval architecture and offshore engineering, the development and a broad use has been achieved in the field of flow control valves for pipe system. Butterfly valves are also widely used for flow control, but there are not many studies for triple-eccentric butterfly valves. Moreover, if the fluid of pipeline flows in the bi-direction then it makes more complicate to adapt triple-eccentric butterfly valves to flow control. In this study, we are trying to develop a bi-directional triple-eccentric butterfly valve through sealing mechanism and stem design study. Digital mockup using 3D CAD was constructed for shape interference check and structural analysis was conducted for structural safety. Also we performed leakage test to check out the durability of the bi-directional pressure for the developed valve.

계기용 밸브 재질의 검증 인장시험에 의한 사용적합성 평가 (Fitness-for-Service Assessment for Instrument Valve Material by Tensile Test for Verification)

  • 신인환;박치용
    • 한국압력기기공학회 논문집
    • /
    • 제17권1호
    • /
    • pp.49-55
    • /
    • 2021
  • In this paper, an application example for fitness-for-service of material is shown. A kind of instrument valve is made of austenitic stainless steel fabricated by the cold working process. The tensile strength of the cold worked austenitic stainless steel has to be limited under 90 ksi to prevent the stress corrosion cracking in power plants. In industrial fields, tensile strengths of some materials were discovered to be over the regulation requirements in a certified material test report (CMTR). Owner's verification tests were performed to compare with that in a CMTR and to check the appropriateness. It is found that, in the case of verification test under the required test speed, valve materials could be used in the field. Although it is only one application sample of material check process in the power generation site, this case study could show an importance of basic experimental technology in academia and research circles.

음향방출 계측에 의한 터빈 제어밸브 내부누설 평가연구 (Study on Evaluation of Internal Leak of Turbine Control Valve in Power Plant Using Acoustic Emission Signal Measurement)

  • 이상국
    • 동력기계공학회지
    • /
    • 제12권5호
    • /
    • pp.65-70
    • /
    • 2008
  • The purpose of this study is to verify availability of the acoustic emission in-situ monitoring method to the internal leak and operating conditions of the turbine major valves relating to safety for turbine operating and prevention of turbine trouble at nuclear power plants. In this study, acoustic emission tests are performed when the pressurized electro-hydraulic control oil flowed through turbine electro-hydraulic controller oil check valve and turbine power/trip fluid solenoid valve in the condition of actual turbine operating. The acoustic emission method was applied to the valves at the site, and the background noise was measured far the abnormal plant condition. To judge for the leak existence ell the object valves, voltage analysis and frequency analysis of acoustic signal emitted from infernal leak in the valve operating condition are performed. It was conformed that acoustic emission method could monitor for valve internal leak to high sensitivity.

  • PDF

역류방지 체크밸브의 응고해석 특성 (Solidification Analysis Characteristics of Back Flow Prevention Check Valve)

  • 윤정인;문정현;손창효;이정진
    • 동력기계공학회지
    • /
    • 제19권3호
    • /
    • pp.69-74
    • /
    • 2015
  • Check valves used in vessels include shock-release function on piping system, aside from basic back flow prevention. However, proper and enough protection of system is not obtainable due to use of high-pressure and bulk fluids, resulting from enlargement of vessels. In this study, casting analysis of check valves protecting systems in flow path from water hammering or back flow is conducted, using Z-CAST program. Also, molten metal filling, flow analysis, solidification analysis and shrinkage cavity analysis are conducted. The main results are as following. Regarding filling of each risering, molten metal showed stable supply condition without being isolated. It was identified that the final solidification exists on risering, but shrinkage cavity possibly might happens at the point of isolation solidification.

모바일 유압장치에서 부하의 유지와 내림 특성 비교 (Analysis of Characteristics of Load Movement in Mobile Hydraulic Equipment)

  • 조미현;허준영
    • 드라이브 ㆍ 컨트롤
    • /
    • 제15권4호
    • /
    • pp.17-22
    • /
    • 2018
  • Mobile hydraulics require higher energy efficiency, and a simpler as well as robust design, than general industrial hydraulics. The 6/3-way directional control valve is widely used as a mobile hydraulic control valve. However, since the 6/3-way directional control valve is a spool type valve, it is difficult to maintain the load. A counterbalance valve is typically used, to maintain the load, and lift down. However, in an industrial field using a mobile hydraulics device, a pilot controlled check valve may be used to implement holding and lifting operation of the self-weight load, and a relief valve may be used simply to exert back pressure. But no comparative analysis of advantages and disadvantages of each method was revealed. In this study, various methods of holding and unloading load with self-weight in mobile hydraulics are investigated, and compared through simulation using AMESim software. This is experimentally verified by using Festo's mobile hydraulic test rig TP800.