• Title/Summary/Keyword: Chebyshev filter

Search Result 96, Processing Time 0.034 seconds

Design of Gain- Tuning Continuous-Time Filter for Direct-Conversion Receiver (직접변환 방식 수신기용 이득 조정 연속시간필터 설계)

  • Kim, Byoung-Wook;Bang, Jun-Ho;Kim, Yeong-Min
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.515-516
    • /
    • 2007
  • A novel design of contious-time filter for direct conversion receiver applications is proposed. The filter supports different modes including GSM, WCDMA. A 5th chebyshev filter is realized in a gm-C filter topology. The filter circuit is implemented in a standard CMOS $0.35{\mu}m$ processing parameter with a supply voltage of 2.5V. The HSPICE results show that the filter has 200KHz and 5MHz cutoff frequency, and each 3.4us and 85.44us gm value.

  • PDF

Modified Hairpin Filters Improving the Suppression Performance of Stop-Band (저지 대역 제거 특성을 향상시킨 변형된 헤어핀 여파기)

  • Kim, Bong-Su;Kang, Min-Soo;Byun, Woo-Jin;Kim, Kwang-Seon;Song, Myung-Sun
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.21 no.1
    • /
    • pp.8-13
    • /
    • 2010
  • In this paper, a new hairpin type strip-line BPF(Band Pass Filter) improving the suppression performance of unwanted frequency signal is studied. A modified hairpin filter is designed by classical hairpin filter design methodology and is realized by newly placing structure of designed filter. And a newly formed coupled-line effects between modified bilateral symmetry structures make the transmission zeros. Each transmission zeros can shift its frequency to wanted frequency by tuning a certain part of filter. To investigate the validity of this novel technique, an order-5 Chebyshev BPF centered at 9.2 GHz with a 15 % FBW(fractional bandwidth) were used. According to design and measurement results, a good performance of insertion loss of 0.8 dB and unwanted signal suppression of maximum 50 dB is achieved at full input/output ports.

Stacked LTCC Band-Pass Filter for IEEE 802.11a (IEEE 802.11a용 적층형 LTCC 대역통과 여파기)

  • Lee Yun-Bok;Kim Ho-Yong;Lee Hong-Min
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.16 no.2 s.93
    • /
    • pp.154-160
    • /
    • 2005
  • Microwave Otters are essential device in modem wireless systems. A compact dimension BPF(Band-pass Filter) for IEEE 802.11a WLAN service is realized using LTCC multi-layer process. To extrude 2-stage band-pass equivalent circuit, band-pass and J-inverter transform applied to Chebyshev low-pass prototype filter. Because parallel L-C resonator is complicate and hard to control the inductor characteristics in high frequency, the shorted $\lambda/4$ stripline is selected for the resonator structure. The passive element is located in the different layers connected by conventional via structure and isolated by inner GND. The dimension of fabricated stacked band-pass filter which is composed of six layers, is $2.51\times2.27\times1.02\;mm^3$. The measured filter characteristics show the insertion loss of -2.25 dB, half-power bandwidth of 220 MHz, attenuation at 5.7 GHz of -32.25 dB and group delay of 0.9 ns at 5.25 GHz.

A $0.13-{\mu}m$ CMOS Active-RC Filter for LTE-Advanced Systems (LTE-Advanced 표준을 지원하는 $0.13-{\mu}m$ CMOS Active-RC 필터 설계)

  • Lee, Kyoung-Wook;Kim, Jong-Myeong;Park, Min-Kyung;Hyun, Seok-Bong;Jung, Jae-Ho;Kim, Chang-Wan
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2011.10a
    • /
    • pp.396-397
    • /
    • 2011
  • This paper has proposed a multi-channel low pass filter (LPF) for LTE-Advanced systems. The proposed LPF is an active-RC 5th chebyshev topology with three cut-off frequencies of 5 MHz, 10 MHz, and 40 MHz. A 3-bit tuning circuit has been adopted to prevent variations of each cut-off frequency from process, voltage, and temperature (PVT). To achieve a high cut-off frequency of 40 MHz, an operational amplifier used in the proposed filter has employed a PMOS cross-connection load with a negative impedance. A proposed filter has been implemented in a $0.13-{\mu}m$ CMOS technology and consumes 20.2 mW with a 1.2V supply voltage.

  • PDF

Dielectric Waveguide Channel Dropping Filter (유전체 도파관을 이용한 채널 드로핑 필터)

  • 김신기;박동철;오승엽
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.25 no.1
    • /
    • pp.1-7
    • /
    • 1988
  • A new type broadband channel dropping filter which has a potential use as a millimeter-wave multiplexer has been realized by properly connecting 3-dB directional couplers and bandstop filters. 90\ulcorner3-dB directional couplers have been designed using two nonuniformly coupled dielectric image guides, while bandstop filters with Chebyshev passbands have been designed using dielectric image-guide grating structure. Effective dielectric constant method has been aplied to the image-guide dispersion analysis and to the design of bandstop gratings and 3-dB couplers. Experimental results in excellent agreement with computed responses are demonstrated.

  • PDF

Ku-Band Dielectric Resonator Bandpass Filter for Satellite Transponder (인공 위성 중계기용 Ku-Band 유전체 공진기 대역 통과 필터)

  • 김상철;이찬주;홍의석
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.29A no.11
    • /
    • pp.49-56
    • /
    • 1992
  • In this paper a band-pass filter using dielectric resonators with tuning screw and spacer at Ku-band is designed and constructed. For the filter design and construction, the coupling coefficient K between two resonators is numberically evaluated. The external quality factor Q$_{ex}$ is also calculated with a microstrip line which is necessary for the field excitation of dielectric resonator. The coupling between dielectric resonator and microstrip line depends mainly upon the magnetic field and is principal parameter in band-pass filter. The Q$_{ex}$ and K data which are evaluated by numberical analysis are practically applied to the filter construction. The theoretical Band-pass filter responses are given by Chebyshev approximation and they are nearly similar to the experimental results.

  • PDF

A Compact Lumped-Element Low-Pass Filter with Transmission Zeros

  • Lee, Byoung-Hwa;Park, Sang-Soo
    • Journal of electromagnetic engineering and science
    • /
    • v.3 no.1
    • /
    • pp.35-38
    • /
    • 2003
  • In this paper, compact lumped-element low-pass filter structure with two transmission zeros at second and third harmonics is presented. The use of lumped-elements and transmission zeros can provide the advantages of compact size, sharp cutoff and wide stop-band frequency response. The proposed low-pass filter is a modified Chebyshev low-pass filter type and is implemented by the use of low temperature co-fired ceramic (LTCC) technology. This filter has been verified by both simulation and experiment. The simulated and experimental results agree very well.

Design of a Microwave Distributed Amplifier Considering Capacitance Absorption Capability (정전용량 흡수 능력을 고려한 마이크로파 분포증폭기 설계)

  • Kim, Nam-Tae
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.46 no.11
    • /
    • pp.50-55
    • /
    • 2009
  • In this paper, a distributed amplifier is designed using distributed network synthesis that provides the optimum absorption capability of a capacitance. Transfer functions of filters, which consist of the amplifier, are synthesized by a low-pass Chebyshev approximation. Capacitances that a filter network can absorb are calculated as a function of its minimum insertion loss(MIL) and ripple. Active devices in a distributed amplifier are modeled as equivalent circuits by using their S-parameters, and their equivalent capacitances are absorbed into filter structures by properly adjusting the MIL and ripple of a transfer function. As an application example, a distributed amplifier with the gain of about 12.5dB is designed that operates over the frequency range between 0.1 and 7.5GHz. Experimental results prove that distributed network synthesis, which considers capacitance absorption capability, is useful to the design of distributed amplifiers.

A Fully Differential RC Calibrator for Accurate Cut-off Frequency of a Programmable Channel Selection Filter

  • Nam, Ilku;Choi, Chihoon;Lee, Ockgoo;Moon, Hyunwon
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.16 no.5
    • /
    • pp.682-686
    • /
    • 2016
  • A fully differential RC calibrator for accurate cut-off frequency of a programmable channel selection filter is proposed. The proposed RC calibrator consists of an RC timer, clock generator, synchronous counter, digital comparator, and control block. To verify the proposed RC calibrator, a six-order Chebyshev programmable low-pass filter with adjustable 3 dB cut-off frequency, which is controlled by the proposed RC calibrator, was implemented in a $0.18-{\mu}m$ CMOS technology. The channel selection filter with the proposed RC calibrator draws 1.8 mA from a 1.8 V supply voltage and the measured 3 dB cut-off frequencies of the channel selection LPF is controlled accurately by the RC calibrator.

A Design Method for Third-Band FIR Filters of Equi-Ripple Passband (균일 리플 통과대역 응답을 갖는 1/3 밴드 FIR 필터의 설계)

  • Moon Dong-Wook;Kim Lark-Kyo
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.54 no.9
    • /
    • pp.570-576
    • /
    • 2005
  • In FIR (Finite Impulse Response) filter applications, Nth-band FIR digital filters are known to be important due to their reduced computational requirements. The conventional methods for designing FIR filters use iterative approaches such as the well-known Parks-Mcclellan algorithm. the Parks-Mcclellan algorithm is also used to design Nth-band FIR digital filters. But a disadvantage of the Parks-McClellan algorithm Is that it needs a good amount of design time. This paper describes a direct design method for third-band FIR Filters using Chebyshev polynomial, which provide a reduction in design time over indirect methods such as the Parks-McClellan algorithm. The response of the resulting filter is equi-ripple in passband. The proposed method of design produces a passband response that is equi-ripple to within a minuscule error, compare to that of the Parks-McClellan algorithm.