• 제목/요약/키워드: Chebyshev Orthogonal Polynomials

검색결과 18건 처리시간 0.028초

Flexural-Torsional Coupled Vibration of Slewing Beams Using Various Types of Orthogonal Polynomials

  • Kapania Rakesh K.;Kim, Yong-Yook
    • Journal of Mechanical Science and Technology
    • /
    • 제20권11호
    • /
    • pp.1790-1800
    • /
    • 2006
  • Dynamic behavior of flexural-torsional coupled vibration of rotating beams using the Rayleigh-Ritz method with orthogonal polynomials as basis functions is studied. Performance of various orthogonal polynomials is compared to each other in terms of their efficiency and accuracy in determining the required natural frequencies. Orthogonal polynomials and functions studied in the present work are: Legendre, Chebyshev, integrated Legendre, modified Duncan polynomials, the special trigonometric functions used in conjunction with Hermite cubics, and beam characteristic orthogonal polynomials. A total of 5 cases of beam boundary conditions and rotation are studied for their natural frequencies. The obtained natural frequencies and mode shapes are compared to those available in various references and the results for coupled flexural-torsional vibrations are especially compared to both previously available references and with those obtained using NASTRAN finite element package. Among all the examined orthogonal functions, Legendre orthogonal polynomials are the most efficient in overall CPU time, mainly because of ease in performing the integration required for determining the stiffness and mass matrices.

직교다항식을 이용한 자동차 압축기용 가변 사판의 구조최적설계 (Structural Optimization of Variable Swash Plate for Automotive Compressor Using Orthogonal Polynomials)

  • 백석흠;김현성;한동섭
    • 대한기계학회논문집A
    • /
    • 제35권10호
    • /
    • pp.1273-1279
    • /
    • 2011
  • 자동차 압축기는 연비 개선효과를 위해 가변 사판형 압축기를 사용한다. 가변 사판의 회전 토크와 피스톤에 작용하는 압력은 사판의 형상과 변형에 중요한 영향을 미친다. 본 논문은 Chebyshev 직교다항식과 최적화 기법을 이용하여 가변 사판의 최적 형상을 결정하였다. 사판의 설계 요구사항은 정상 운전상태에서 최대 응력과 변형을 최소화하면서 체적을 감소시키는 것이다. 직교배열표, 분산분석과 반응표면최적화 방법은 최적 설계변수를 결정하고 주효과를 찾는데 사용하였다. 최적설계 결과로부터, 사판의 유의한 설계변수를 확인하고 이의 최적해와 설계요구조건 만족에 대한 유용성을 설명하였다.

Trade-off Analysis in Multi-objective Optimization Using Chebyshev Orthogonal Polynomials

  • Baek Seok-Heum;Cho Seok-Swoo;Kim Hyun-Su;Joo Won-Sik
    • Journal of Mechanical Science and Technology
    • /
    • 제20권3호
    • /
    • pp.366-375
    • /
    • 2006
  • In this paper, it is intended to introduce a method to solve multi-objective optimization problems and to evaluate its performance. In order to verify the performance of this method it is applied for a vertical roller mill for Portland cement. A design process is defined with the compromise decision support problem concept and a design process consists of two steps: the design of experiments and mathematical programming. In this process, a designer decides an object that the objective function is going to pursuit and a non-linear optimization is performed composing objective constraints with practical constraints. In this method, response surfaces are used to model objectives (stress, deflection and weight) and the optimization is performed for each of the objectives while handling the remaining ones as constraints. The response surfaces are constructed using orthogonal polynomials, and orthogonal array as design of experiment, with analysis of variance for variable selection. In addition, it establishes the relative influence of the design variables in the objectives variability. The constrained optimization problems are solved using sequential quadratic programming. From the results, it is found that the method in this paper is a very effective and powerful for the multi-objective optimization of various practical design problems. It provides, moreover, a reference of design to judge the amount of excess or shortage from the final object.

해양자동채염기의 최소중량설계를 위한 메타모델 기반 근사최적화 (Approximate Optimization Based on Meta-model for Weight Minimization Design of Ocean Automatic Salt Collector)

  • 송창용
    • 융합정보논문지
    • /
    • 제11권1호
    • /
    • pp.109-117
    • /
    • 2021
  • 본 논문에서는 해양자동채염기의 구조중량 최소화를 위해 구조설계에 대한 메타모델 기반 근사최적화를 수행하였다. 구조해석은 해양자동채염기의 초기설계에 대한 강도성능을 평가하기 위해 유한요소법을 이용하여 수행하였다. 구조해석에서는 설계하중조건에 대한 강도성능을 평가하였다. 최적설계문제는 강도성능 제한조건을 만족하면서 중량을 최소화할 수 있는 구조두께의 설계변수를 결정하도록 정식화하였다. 근사최적화에는 반응표면법, 크리깅 모델 및 체비쇼프 직교 다항식의 메타모델을 사용하였다. 수치계산 특성을 검토하기 위해 근사최적화 결과는 비근사최적화 결과와 비교하였다. 근사최적화에 사용된 메타모델 중 체비쇼프 직교 다항식이 해양자동채염기의 구조설계에 가장 적합한 최적설계 결과를 나타내었다.

ON ASYMPTOTIC METHOD IN CONTACT PROBLEMS OF FREDHOLM INTEGRAL EQUATION OF THE SECOND KIND

  • Abdou, M.A.
    • Journal of applied mathematics & informatics
    • /
    • 제9권1호
    • /
    • pp.261-275
    • /
    • 2002
  • Besides asymptotic method, the method of orthogonal polynomials has been used to obtain the solution of the Fredholm integral equation. The principal (singular) part of the kerne1 which corresponds to the selected domain of parameter variation is isolated. The unknown and known functions are expanded in a Chebyshev polynomial and an infinite a1gebraic system is obtained.

Analytical approximate solutions for large post-buckling response of a hygrothermal beam

  • Yu, Yongping;Sun, Youhong
    • Structural Engineering and Mechanics
    • /
    • 제43권2호
    • /
    • pp.211-223
    • /
    • 2012
  • This paper deals with large deformation post-buckling of a linear-elastic and hygrothermal beam with axially nonmovable pinned-pinned ends and subjected to a significant increase in swelling by an alternative method. Analytical approximate solutions for the geometrically nonlinear problem are presented. The solution for the limiting case of a string is also obtained. By coupling of the well-known Maclaurin series expansion and orthogonal Chebyshev polynomials, the governing differential equation with sinusoidal nonlinearity can be reduced to form a cubic-nonlinear equation, and supplementary condition with cosinoidal nonlinearity can also be simplified to be a polynomial integral equation. Analytical approximations to the resulting boundary condition problem are established by combining the Newton's method with the method of harmonic balance. Two approximate formulae for load along axis, potential strain for free hygrothermal expansion and periodic solution are established for small as well as large angle of rotation at the end of the beam. Illustrative examples are selected and compared to "reference" solution obtained by the shooting method to substantiate the accuracy and correctness of the approximate analytical approach.

THE SENSITIVITY OF STRUCTURAL RESPONSE USING FINITE ELEMENTS IN TIME

  • Park, Sungho;Kim, Seung-Jo
    • Journal of Theoretical and Applied Mechanics
    • /
    • 제3권1호
    • /
    • pp.66-80
    • /
    • 2002
  • The bilinear formulation proposed earlier by Peters and Izadpanah to develop finite elements in time to solve undamped linear systems, Is extended (and found to be readily amenable) to develop time finite elements to obtain transient responses of both linear and nonlinear, and damped and undamped systems. The formulation Is used in the h-, p- and hp-versions. The resulting linear and nonlinear algebraic equations are differentiated to obtain the first- and second-order sensitivities of the transient response with respect to various system parameters. The present developments were tested on a series of linear and nonlinear examples and were found to yield, when compared with results obtained using other methods, excellent results for both the transient response and Its sensitivity to system parameters. Mostly. the results were obtained using the Legendre polynomials as basis functions, though. in some cases other orthogonal polynomials namely. the Hermite. the Chebyshev, and integrated Legendre polynomials were also employed (but to no great advantage). A key advantage of the time finite element method, and the one often overlooked in its past applications, is the ease In which the sensitivity of the transient response with respect to various system parameters can be obtained. The results of sensitivity analysis can be used for approximate schemes for efficient solution of design optimization problems. Also. the results can be applied to gradient-based parameter identification schemes.

  • PDF

피로수명예측을 위한 반응표면근사화와 순위선호정보를 가진 다기준최적설계에의 응용 (Response Surface Approximation for Fatigue Life Prediction and Its Application to Multi-Criteria Optimization With a Priori Preference Information)

  • 백석흠;조석수;주원식
    • 대한기계학회논문집A
    • /
    • 제33권2호
    • /
    • pp.114-126
    • /
    • 2009
  • In this paper, a versatile multi-criteria optimization concept for fatigue life prediction is introduced. Multi-criteria decision making in engineering design refers to obtaining a preferred optimal solution in the context of conflicting design objectives. Compromise decision support problems are used to model engineering decisions involving multiple trade-offs. These methods typically rely on a summation of weighted attributes to accomplish trade-offs among competing objectives. This paper gives an interpretation of the decision parameters as governing both the relative importance of the attributes and the degree of compensation between them. The approach utilizes a response surface model, the compromise decision support problem, which is a multi-objective formulation based on goal programming. Examples illustrate the concepts and demonstrate their applicability.

피로수명예측을 위한 반응표면근사화와 절충의사결정문제의 응용 (Response Surface Approximation for Fatigue Life Prediction and Its Application to Compromise Decision Support Problem)

  • 백석흠;조석수;장득열;주원식
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회A
    • /
    • pp.1187-1192
    • /
    • 2008
  • In this paper, a versatile multi-objective optimization concept for fatigue life prediction is introduced. Multi-objective decision making in engineering design refers to obtaining a preferred optimal solution in the context of conflicting design objectives. Compromise decision support problems are used to model engineering decisions involving multiple trade-offs. These methods typically rely on a summation of weighted attributes to accomplish trade-offs among competing objectives. This paper gives an interpretation of the decision parameters as governing both the relative importance of the attributes and the degree of compensation between them. The approach utilizes a response surface model, the compromise decision support problem, which is a multi-objective formulation based on goal programming. Examples illustrate the concepts and demonstrate their applicability.

  • PDF

Chebyshev 직교다항식을 이용한 피로수명예측을 위한 반응표면근사화 (Response Surface Approximation for Fatigue Life Prediction Using Chebyshev Orthogonal Polynomials)

  • 진기철;백석흠;조석수;장득열;주원식
    • 한국산학기술학회:학술대회논문집
    • /
    • 한국산학기술학회 2007년도 추계학술발표논문집
    • /
    • pp.319-322
    • /
    • 2007
  • 철도차량의 피로수명예측은 안전성과 신뢰성을 확보하고 높은 품질을 위한 중요한 관점이다. 이것은 최적설계 과정에서 추가의 제한조건으로 최소 피로수명값을 사용해서 접근할 수 있다. 하지만 피로수명은 회수의 함수이기 때문에 최적설계 적용에 제약이 따른다. 본 연구는 피로수명예측을 위한 최적설계에 대해 2단계 반응표면모델의 응용을 제안한다. 적용 예제로 컨테이너 화차의 제동 브라켓 엔드빔의 피로파손 문제에 대해 제안한 방법의 유효성을 설명한다.

  • PDF